Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202409876, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923765

ABSTRACT

Lattice-oxygen activation has emerged as a popular strategy for optimizing the performance and selectivity of oxide-based thermocatalysis and electrolysis. However, the significance of lattice oxygen in oxide photocatalysts has been ignored, particularly in gas‒solid reactions. Here, using methane oxidation over a Ru1@ZnO single-atom photocatalyst as the prototypical reaction and via 18O isotope labelling techniques, we found that lattice oxygen can directly participate in gas‒solid reactions. Lattice oxygen played a dominant role in the photocatalytic reaction, as determined by estimating the kinetic constants in the initial stage. Furthermore, we discovered that dynamic diffusion between O2 and lattice oxygen proceeded even in the absence of targeted reactants. Finally, single-atom Ru can facilitate the activation of adsorbed O2 and the subsequent regeneration of consumed lattice oxygen, thus ensuring high catalyst activity and stability. The results provide guidance for next-generation oxide photocatalysts with improved activities and selectivities.

2.
Small ; : e2305779, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764279

ABSTRACT

Photocatalytic water splitting for clean hydrogen production has been a very attractive research field for decades. However, the insightful understanding of the actual active sites and their impact on catalytic performance is still ambiguous. Herein, a Pr-doped TiO2-supported Cu single atom (SA) photocatalyst is successfully synthesized (noted as Cu/Pr-TiO2). It is found that Pr dopants passivate the formation of oxygen vacancies, promoting the density of photogenerated electrons on the CuSAs, and optimizing the electronic structure and H* adsorption behavior on the CuSA active sites. The photocatalytic hydrogen evolution rate of the obtained Cu/Pr-TiO2 catalyst reaches 32.88 mmol g-1 h-1, 2.3 times higher than the Cu/TiO2. Innovatively, the excellent catalytic activity and performance is attributed to the active sites change from O atoms to CuSAs after Pr doping is found. This work provides new insight for understanding the accurate roles of single atoms in photocatalytic water splitting.

3.
Dalton Trans ; 52(40): 14583-14594, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37782542

ABSTRACT

This study introduces robust screening methodology for the efficient design of delafossite CuM1-xM'xO2 solid-solution photocatalysts using band-structure engineering. The investigation not only reveals the formation rules for various CuM1-xM'xO2 solid solutions but also highlights the dependence on both lattice compatibility and thermodynamic stability. Moreover, the study uncovers the nonlinear relationship between composition and band gaps in these solid solutions, with the bowing coefficient determined by the substitution constituents. By optimizing the constituent elements of the conduction band edge and adjusting solubility, the band structure of CuM1-xM'xO2 samples can be fine-tuned to the visible light region. Among the examined photocatalysts, CuAl0.5Ga0.5O2 exhibits the highest H2 evolution rate by striking a balance between visible-light absorption and sufficient reduction potential, showing improvements of 28.8 and 6.9 times those of CuAlO2 and CuGaO2, respectively. Additionally, CuGa0.9In0.1O2 demonstrates enhanced electron migration and surpasses CuGaO2 in H2 evolution due to a reduction in the effective mass of photogenerated electrons. These findings emphasize the pivotal role of theoretical predictions in synthesizing CuM1-xM'xO2 solid solutions and underscore the importance of rational substitution constituents in optimizing light absorption, reduction potentials, and effective mass for efficient hydrogen production.

4.
Adv Mater ; 35(48): e2306633, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37736698

ABSTRACT

Improving the selective ammonia production capacity of electrocatalytic nitrate reduction reaction (NO3 RR) at ambient conditions is critical to the future development and industrial application of electrosynthesis of ammonia. However, the reaction involves multi-proton and electron transfer as well as the desorption and underutilization of intermediates, posing a challenge to the selectivity of NO3 RR. Here the electrodeposition site of Co is modulated by depositing Bi at the bottom of the catalyst, thus obtaining the Co+Bi@Cu NW catalyst with a Bi-Co corridor structure. In 50 mm NO3 - , Co+Bi@Cu NW exhibits a highest Faraday efficiency of ≈100% (99.51%), an ammonia yield rate of 1858.2 µg h-1  cm-2 and high repeatability at -0.6 V versus the reversible hydrogen electrode. Moreover, the change of NO2 - concentration on the catalyst surface observed by in situ reflection absorption imaging and the intermediates of the NO3 RR process detected by electrochemical in situ Raman spectroscopy together verify the NO2 - trapping effect of the Bi-Co corridor structure. It is believed that the measure of modulating the deposition site of Co by loading Bi element is an easy-to-implement general method for improving the selectivity of NH3 production as well as the corresponding scientific research and applications.

5.
Nanoscale ; 15(29): 12375-12387, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37455594

ABSTRACT

In this work, we used Cu-BTC-IPA and Co(NO3)2·6H2O as precursors to synthesize CuCoO2 (CCO) nanocrystals with a suitable crystal phase, morphology and high yield by changing the process parameters, such as reactant concentration, reactant ratio, mineralizer dosage, and the type of polyvinylpyrrolidone surfactant. In addition, the effects of different concentrations (1 at%, 3 at%, 5 at%) of Fe doping on the crystal structure and oxygen evolution reaction (OER) performance of CCO were studied. The experimental results show that Fe ions are uniformly doped into the lattice to replace the A-site (Cu+) position, which not only reduces the grain size of CCO, but also increases its specific surface area. We further employed the density functional theory (DFT) method to simulate the OER process of transition metal Fe-doped CCO (A-site substitution) and proposed that Fe doping can reduce the Gibbs free energy of each step and promote the formation of each intermediate, thereby improving its OER catalytic performance. In 1.0 M KOH electrolyte, the 3 at% Fe-doped CCO (Ni@3FCCO) electrode has the best OER performance (η10 = 369 mV, Tafel slope = 69 mV dec-1), and the required overpotential to attain 10 mA cm-2 slightly increased (∼30.2 mV) after 18 hours of continuous OER. The crystal morphology and chemical composition did not change significantly before and after the long-term OER test, indicating that the 3FCCO nanosheets have good OER activity and stability. We have proposed two reasons for the significant improvement of OER performance for Fe-doped CCO nanosheets: (1) the partial substitution of Cu cations by Fe cations not only regulates the electronic structure of CCO, making the catalytically active center no longer a single Co site, but also contains the Fe site, thus increasing the number of overall active sites; (2) the synergistic effect between Fe cations and Co cations in the OER process could enhance the activity of a single active site.

6.
Inorg Chem ; 62(21): 8397-8406, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37179491

ABSTRACT

This study focuses on the systematic investigation of the microstructure, interfacial energy, and electronic structure of six BiOX/BiOY heterostructures constructed using four bismuth oxyhalide materials. Utilizing density functional theory (DFT) calculations, the study provides fundamental insights into the interfacial structure and properties of these heterostructures. The results indicate that the formation energies of BiOX/BiOY heterostructures decrease in the order of BiOF/BiOI, BiOF/BiOBr, BiOF/BiOCl, BiOCl/BiOBr, BiOBr/BiOI, and BiOCl/BiOI. BiOCl/BiBr heterostructures were found to have the lowest formation energy and were the most easily formed. Conversely, the formation of BiOF/BiOY heterostructures was observed to be unstable and difficult to achieve. Furthermore, the interfacial electronic structure analysis revealed that BiOCl/BiOBr, BiOCl/BiOI, and BiOBr/BiOI displayed opposite electric fields that facilitated electron-hole pair separation. Therefore, these research findings provide a comprehensive understanding of the mechanisms underlying the formation of BiOX/BiOY heterostructures and present theoretical guidance for the design of innovative and efficient photocatalytic heterostructures, with an emphasis on BiOCl/BiOBr heterostructures. This study highlights the advantages of distinctively layered BiOX materials and their heterostructures, which offer a wide range of band gap values, and demonstrates their potential for various research and practical applications.

7.
RSC Adv ; 12(6): 3755-3762, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35425359

ABSTRACT

Binary Cu x O1-x compounds have some advantages as optoelectronic functional materials, but their further development has encountered some bottlenecks, such as inaccurate bandgap values and slow improvement of photoelectric conversion efficiency. In this work, all possible stoichiometric ratios and crystal structures of binary Cu x O1-x compounds were comprehensively analyzed based on a high-throughput computing database. Stable and metastable phases with different stoichiometric ratios were obtained. Their stability in different chemical environments was further analyzed according to the component phase diagram and chemical potential phase diagram. The calculation results show that Cu, Cu2O and CuO have obvious advantages in thermodynamics. The comparison and analysis of crystal microstructure show that the stable phase of Cu x O1-x compounds contains the following two motifs: planar square with Cu atoms as the center and four O atoms as the vertices; regular tetrahedron with O atoms as the center and four Cu atoms as the vertices. In different stoichiometric ratio regions, the electron transfer and interaction modes between Cu and O atoms are different. This effect causes energy differences between bonding and antibonding states, resulting in the different conductivity of binary Cu x O1-x compounds: semi-metallic ferromagnetic, semiconducting, and metallicity. This is the root of the inconsistent and inaccurate bandgap values of Cu x O1-x compounds. These compositional, structural, and property variations provide greater freedom and scope for the development of binary Cu x O1-x compounds as optoelectronic functional materials.

8.
J Phys Chem Lett ; 12(44): 10863-10873, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34730358

ABSTRACT

The exfoliation of 2D nanomaterials from 3D multimetal oxides with a stable structure is a great challenge. Herein, a delafossite CuFeO2+δ nanosheet becomes an open-layered structure by introducing excess oxygen so that the 2D Janus CuFeO2+δ single layer can be further obtained by aqueous ultrasonic exfoliation. The 2D Janus CuFeO2+δ single layer breaks the limitation of mirror symmetry, which is very beneficial to the effective separation of photogenerated electron-hole pairs. Serving as both a photoelectrode and a photocatalyst, the 2D Janus CuFeO2+δ single layer/few layer remarkably enhances the photocatalytic activity with long-term stability: the photocurrent density is increased by 2-fold, and the rate of H2 evolution is increased by 1.5-fold, in comparison with the counterpart of unexfoliated CuFeO2+δ nanosheets. This work demonstrates that 2D nanomaterials can be directly exfoliated from 3D nanomaterials by rational composition and microstructure design, which is helpful in promoting the development of bimetallic-oxide-ene (BMOene) as a novel functional material.

9.
R Soc Open Sci ; 8(9): 210243, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34540245

ABSTRACT

This work systematically analysed the electrochemical and corrosion behaviour of Ti-Ta-Ag ternary alloy samples in Hank's solution. For the samples with 1.5% and 3% Ag content, the sintering temperature increased from 750 to 950°C, and the corresponding corrosion resistance increased by 100 times due to the increased alloying of Ag; meanwhile for the sample with 4.5% Ag content, the sintering temperature increased from 750 to 950°C, and the corresponding corrosion resistance decreased by six times due to the increased precipitation of Ag. These tests prove that the Ag alloying is beneficial to the enhancement of the corrosion resistance of Ti-Ta-Ag ternary alloy, but the Ag trace precipitation has the opposite effect. A series of electrochemical characterizations and density functional theory calculations explain the mechanism of the above phenomenon. Ag alloying can promote the formation of uniform, complete, dense, stable and thick passivation layer on the surface of Ti-Ta-Ag ternary alloy, which makes Ti-Ta-Ag ternary alloy uniformly corroded without pitting. In addition, Ag alloying can effectively reduce the contact resistance of the solid-liquid interface. However, the trace precipitation of Ag plays the opposite role to the above effect.

10.
Inorg Chem ; 60(12): 8461-8474, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34096279

ABSTRACT

The built-in electric field generated by polar materials is one of the most effective strategies to promote the separation of photogenerated electron-hole pairs in the field of photocatalysis. However, because of the complexity and diversity of the built-in electric field in polar materials, it is not clear how to enhance the photocatalytic performance and how to control the polar electric field effectively. To this end, four-layered bismuth oxyhalides, BiOX, and BiOXO3 (X = Br, I) were synthesized by a simple hydrothermal method. X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis confirmed that they all have the structure characteristics of a sillenite phase. Scanning electron microscopy images show that they all have the morphology of nanosheets. Among them, BiOBrO3 was successfully synthesized and characterized for the first time in the present work. The order of photocatalytic performance (including carrier's lifetime, photocurrent density, and H2 evolution rate) of the four compounds is listed as follows: BiOBrO3 > BiOI > BiOIO3 > BiOBr. In the bulk of the BiOXO3 photocatalyst, the spontaneous polar built-in electric field along the [001] direction is the crucial factor to inhibit the recombination of photogenerated electron-hole pairs, while the surface polar electric field in BiOI can outstandingly inhibit the recombination of photogenerated electron-hole pairs due to the breaking of the mirror symmetry. Therefore, regulating the microstructure and composition of the structure unit, which generates the built-in electric field, can indeed control the magnitude, direction, and effects of built-in electric fields. In practice, we should carefully adjust the strategy according to the actual situation so as to reasonably design and use the polar electric field, giving full play to its role and enhancing the photocatalytic performance.

11.
RSC Adv ; 11(5): 2976-2984, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424205

ABSTRACT

Ti-25Ta-xAg alloy samples with different content of Ag were prepared by spark plasma sintering method. X-ray diffraction, microscopic metallographic, scanning electron microscopy, and transmission electron microscopy were used to analyze the phase structure and morphology of the alloy samples. Ti-Ta-Ag can form a stable ternary alloy system. Furthermore, with the increase of Ag content and sintering temperature, Ag will be precipitated at the grain boundary. In order to explore the precipitation mechanism of Ag in the alloy and its influence on the mechanical properties, the crystal structure, electronic structure, and elastic constant under different Ag solid solubility were calculated systematically by using first-principles calculations. The results show that the critical temperature of Ag in Ti-Ta-Ag ternary alloy is about 2200 K, and the high temperature is favorable for the aging precipitation of Ag. The lattice constants and mechanical properties of (Ti1-x Ag x )3Ta solid solution suddenly change when the Ag solid solubility x value is equal to 0.8, and their changes will follow different rules. The internal mechanism of this phenomenon is that the 4d10 electronic states of Ag have changed from obvious local electronic states to mixed local and non-local electronic states. These results provide theoretical guidance for the application of Ti-Ta-Ag ternary alloys in biomedicine.

12.
RSC Adv ; 11(7): 4276-4285, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-35424361

ABSTRACT

Graphitic carbon nitride, as a very promising two-dimensional structure host for single atom catalysts (SACs), has been studied extensively due to its significant confinement effects of single atoms for photocatalytic applications. In this work, a systematic investigation of g-C3N4 confining noble metal single atoms (NM1@g-C3N4) will be performed by using DFT calculations. The geometric structure calculations indicate that the most favorable anchored sites for the NM1 is located in the six-fold cavity, and the deformed wrinkle space of g-C3N4 helps the NM1 to be stabilized in the six-fold cavity. The electronic structure calculations show that the conduction band of NM1@g-C3N4 moved down and crossed through the Fermi level, resulting in narrowing the band gap of the NM1@g-C3N4. Moreover, the confined NM1 provide a new channel of charge transport between adjacent heptazine units, resulting in a longer lifetime of photo-generated carriers except Ru, Rh, Os and Ir atoms. Furthermore, the d-band centres of NM1 in NM1@g-C3N4 show that Rh1@, Pd1@, Ir1@ and Pt1@g-C3N4 SACs may have better photocatalytic performance than other NM1@g-C3N4 SACs. Finally, Pt1@g-C3N4 SACs are considered to have higher photocatalytic activity than other NM1@g-C3N4 SACs. These results demonstrate that the confinement effects of noble metals on monolayer g-C3N4 not only makes the single atom more stable to be anchored on g-C3N4, but also enhances the photocatalytic activity of the system through the synergistic effect between the confined NM1 and the monolayer g-C3N4. These detailed research may provide theoretical support for engineers to prepare photocatalysts with higher activity.

13.
Inorg Chem ; 59(22): 16679-16689, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33124821

ABSTRACT

Hydrothermal and solid-state reaction methods are commonly used to prepare the delafossite CuCrO2 photocatalyst. It has been reported that the photocatalytic performances of CuCrO2 samples prepared by these methods are quite different. In order to explore the possible influence of different preparation processes on the photocatalytic performance and the corresponding improvement strategies, this work compares the microstructure and physicochemical properties of the samples prepared by these two methods on the basis of optimizing the process conditions. A CuCrO2 sample prepared by a hydrothermal method is characterized by high purity, low crystallinity, small grain size, and relatively higher photocatalytic activity. A CuCrO2 sample prepared by a solid-state reaction method is characterized by low purity, high crystallinity, large grain size, and relatively lower photocatalytic activity. In combination with DFT calculations, it is confirmed that the CuCrO2 sample prepared by a solid-state reaction method contains a certain amount of interstitial oxygens. Due to the presence of interstitial oxygens, CuCrO2 has strong light absorption in the visible region, presents semimetallic ferromagnetism, and changes the carrier transport, reaction process, and rate on the electrode surface. These findings will contribute to the further development of efficient CuCrO2-based photocatalysts.

14.
Chem Sci ; 11(24): 6297-6304, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32953025

ABSTRACT

Metal oxides are widely used in different fields, including photoelectrocatalysis, photocatalysis, dye-sensitized solar cells, photoinduced superhydrophilicity and so on. It is well-known that there are intrinsic hydrated layers on the surfaces of metal oxides in ambient air or the electrolyte. Generally, interface layers between metal oxides and solutions have significant effects on the performances in these applications. However, the exact roles of the intrinsic hydrated layers are still unclear. In this study, taking TiO2 and Fe2O3 as model materials, we propose a mild heat treatment to increase the hydroxyl concentration in the hydrated surface layers of the oxides, which improves their photoelectrochemical performance remarkably. Moreover, we find that the heat-regulated hydrated layer plays the role of a hole transfer mediator between oxides and the electrolyte, which can accelerate both interface charge collection and oxygen evolution reaction kinetics in acidic solution. The new insights into the intrinsic hydrated interface layer on oxides can offer guidance not only in photoelectrocatalysis, but also in the other applications mentioned above.

15.
Inorg Chem ; 58(22): 15344-15353, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31697488

ABSTRACT

Internal polarized electric field is found to be an effective and available strategy to separate photogenerated electron-hole pairs. By this method, the efficiency of photocatalytic reactions can be obviously enhanced. Here, the layered compound of BiOIO3 with spontaneous polarization was synthesized by a simple hydrothermal method. Taking another bismuth compound BiOI as a counterpart, which has a similar layered structure, the spontaneous polarization effects of BiOIO3 were analyzed and confirmed. The photocatalytic activity of BiOIO3 and BiOI were evaluated by the degradation of methyl orange. Methyl orange was almost completely photocatalytically decomposed by BiOIO3 and BiOI in 40 and 90 min, respectively. The separation and transfer behaviors of photogenerated electron-hole pairs were investigated by a series of photoelectrochemical characterizations. It is further proved the separation and transmission efficiency of BiOIO3 are higher than those of BiOI. According to the results of density of theory calculations, the internal polarized electric field in BiOIO3 is ascribed to the spatial asymmetry of the IO3 group, which is estimated to ∼1.5 × 1010 V/m. Under the action of this internal polarized electric field, the photogenerated electrons and holes would transfer along opposite directions, i.e., photogenerated electrons and holes respectively gather at the Bi/I side and O side. Additionally, superoxide radicals (•O2-) and holes (h+) are produced during the degradation process, which are responsible for the high visible-light photocatalytic activity. Finally, the cyclic degradation test proves that its photocatalytic performance has long-term stability. Therefore, BiOIO3 polar material can be used as one of the alternative materials for efficient photocatalytic reaction.

16.
Nanomaterials (Basel) ; 8(9)2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30201917

ABSTRACT

As important functional materials, the electronic structure and physical properties of (GaAs)m(AlAs)n superlattices (SLs) have been extensively studied. However, due to limitations of computational methods and computational resources, it is sometimes difficult to thoroughly understand how and why the modification of their structural parameters affects their electronic structure and physical properties. In this article, a high-throughput study based on density functional theory calculations has been carried out to obtain detailed information and to further provide the underlying intrinsic mechanisms. The band gap variations of (GaAs)m(AlAs)n superlattices have been systematically investigated and summarized. They are very consistent with the available reported experimental measurements. Furthermore, the direct-to-indirect-gap transition of (GaAs)m(AlAs)n superlattices has been predicted and explained. For certain thicknesses of the GaAs well (m), the band gap value of (GaAs)m(AlAs)n SLs exponentially increases (increasing n), while for certain thicknesses of the AlAs barrier (n), the band gap value of (GaAs)m(AlAs)n SLs exponentially decreases (increasing m). In both cases, the band gap values converge to certain values. Furthermore, owing to the energy eigenvalues at different k-points showing different variation trends, (GaAs)m(AlAs)n SLs transform from a Γ-Γ direct band gap to Γ-M indirect band gap when the AlAs barrier is thick enough. The intrinsic reason for these variations is that the contributions and positions of the electronic states of the GaAs well and the AlAs barrier change under altered thickness conditions. Moreover, we have found that the binding energy can be used as a detector to estimate the band gap value in the design of (GaAs)m(AlAs)n devices. Our findings are useful for the design of novel (GaAs)m(AlAs)n superlattices-based optoelectronic devices.

17.
Phys Chem Chem Phys ; 20(17): 12005-12015, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29671429

ABSTRACT

For photocatalytic applications, the response of a material to the solar spectrum and its redox capabilities are two important factors determined by the band gap and band edge position of the electronic structure of the material. The crystal structure and composition of the photocatalyst are fundamental for determining the above factors. In this article, we examine the functional material Ta-O-N as an example of how to discuss relationships among these factors in detail with the use of theoretical calculations. To explore how the crystal structure and composition influence the photocatalytic performance, two groups of Ta-O-N materials were considered: the first group included ε-Ta2O5, TaON, and Ta3N5; the second group included ß-Ta2O5, δ-Ta2O5, ε-Ta2O5, and amorphous-Ta2O5. Calculation results indicated that the band gap and band edge position are determined by interactions between the atomic core and valence electrons, the overlap of valence electronic states, and the localization of valence states. Ta3N5 and TaON are suitable candidates for efficient photocatalysts owing to their photocatalytic water-splitting ability and good utilization efficiency of solar energy. δ-Ta2O5 has a strong oxidation potential and a band gap suitable for absorbing visible light. Thus, it can be applied to photocatalytic degradation of most pollutants. Although a-Ta2O5, ε-Ta2O5, and ß-Ta2O5 cannot be directly used as photocatalysts, they can still be applied to modify conventional Ta-O-N photocatalysts, owing to their similar composition and structure. These calculation results will be helpful as reference data for analyzing the photocatalytic performance of more complicated Ta-O-N functional materials. On the basis of these findings, one could design novel Ta-O-N functional materials for specific photocatalytic applications by tuning the composition and crystal structure.

18.
RSC Adv ; 8(2): 596-605, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35538979

ABSTRACT

Compound solid solutions have attracted intensive attention due to their adjustable structure, electronic structure, and optical properties. Despite tremendous advances in compound solid solution preparations, combining a rare metal compound and a bismuth compound with the same crystal phase by forming a compound solid solution is still challenging but fascinating. For example, RE1-x Bi x VO4 with a zircon-type structure exhibits tunable band gaps and photoluminescence performance with varying RE compositions. Herein, Yb1-x Bi x VO4 solid solutions with continuous monophasic phase prepared by a facile synthesis strategy that is combined with co-precipitation and hydrothermal methods are reported. By doping a small amount of Tm3+, Yb x Bi1-x VO4 solid solutions can achieve a broad range up-conversion photoluminescence from UV-light to NIR-light. Combined with DFT calculations, the underlying mechanism of experimental observations is explained. In these up-conversion processes, the existence of Tm3+ is an essential factor. In particular, the NIR-to-UV up-conversion photoluminescence of Yb x Bi0.98-x VO4: 2 mol% Tm3+ solid solution is very interesting and a worthy phenomenon for further studies. As such, designing compound solid solutions may provide a new avenue for controllable up-conversion efficiencies in semiconductor nanocrystals and also a novel insight into the rational tunable up-conversion process for applications in biological labeling and imaging.

19.
Phys Chem Chem Phys ; 19(43): 29583-29593, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29082994

ABSTRACT

In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO2 surface, a transition layer of noble metal oxides is often formed between the TiO2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO2, and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO2/TiO2 and OsO2/TiO2 hetero-structures demonstrate band dividing, while RhO2/TiO2 and IrO2/TiO2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO2/TiO2 hetero-structures show upward band bending. Conversely, RuO2/TiO2 and OsO2/TiO2 hetero-structures present a relatively strong infrared light absorption, while RhO2/TiO2 and IrO2/TiO2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO2/TiO2 and OsO2/TiO2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO2. These findings will provide useful information for understanding the role and effects of a noble metal dioxide as a transition layer between a noble metal co-catalyst and a TiO2 photocatalyst.

20.
Phys Chem Chem Phys ; 19(33): 22069-22077, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28795177

ABSTRACT

Noble metals supported on TiO2 surfaces have shown extraordinary photocatalytic properties in many important processes such as hydrogenation, water splitting, degradation of hazards, and so on. Using density functional theory calculations, this work has systematically investigated the microstructure and electronic structure of three different Au9 isomers loaded on anatase TiO2(001) surface. The calculated results show that the interaction between the Au9 cluster and the TiO2 support is closely related to the adsorption site and the stability of the Au9 cluster in the gas phase. The adsorption energy of the 2D configuration is larger than that of the 3D configuration of the Au9 cluster, owing to the stronger interactions between more adsorption sites. The stable adsorption site for Au9 clusters deposited on the anatase TiO2(001) surface tends to be the O2c-O2c hollow site. The presentation of the MIGS of the Au9 cluster, the disappearance of surface states of the TiO2(001) surface, and the shifting of the Fermi level from the top of the valence band to the bottom of the conduction band suggest strong interactions between the Au9 clusters and the TiO2(001) surface. Importantly, the electron transfer from the Au9 clusters to the TiO2 support occurs mainly through Au-O2c interactions, which are mainly localized at the contact layer of the Au9 clusters. These conclusions are useful to understand various physical and chemical properties of noble metal clusters loaded onto an oxide surface, and helpful to design novel metal/semiconductor functional composite materials and devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...