Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 6170245, 2022.
Article in English | MEDLINE | ID: mdl-36438693

ABSTRACT

Wearing masks in a crowded environment can reduce the risk of infection; however, wearing nonstandard cloud does not have a good protective effect on the virus, which makes it necessary to monitor the wearing of masks in real time. You only look once (YOLO) series models are widely used in various edge devices. The existing YOLOv5s method meets the requirements of inference time, but it is slightly deficient in terms of accuracy due to its generality. Considering the characteristics of our driver medical mask dataset, a position insensitive loss which is cloud extract shared area feature in different categories and half deformable convolution net methods with cloud concern noteworthy features were introduced into YOLOv5s to improve accuracy, with an increase of 6.7% mean average in @.5 (mAP@.5) and 8.3% in mAP@.5:.95 for our dataset. To ensure that our method can be applied in a real scenario, TensorRT and CUDA were introduced to reduce the inference time in two edge devices (Jetson TX2 and Jetson Nano) and one desktop device, whose inference time was faster than that of previous methods.

2.
Comput Intell Neurosci ; 2021: 4529107, 2021.
Article in English | MEDLINE | ID: mdl-34790231

ABSTRACT

Frequent occurrence and long-term existence of respiratory diseases such as COVID-19 and influenza require bus drivers to wear masks correctly during driving. To quickly detect whether the mask is worn correctly on resource-constrained devices, a lightweight target detection network SAI-YOLO is proposed. Based on YOLOv4-Tiny, the network incorporates the Inception V3 structure, replaces two CSPBlock modules with the RES-SEBlock modules to reduce the number of parameters and computational difficulty, and adds a convolutional block attention module and a squeeze-and-excitation module to extract key feature information. Moreover, a modified ReLU (M-ReLU) activation function is introduced to replace the original Leaky_ReLU function. The experimental results show that SAI-YOLO reduces the number of network parameters and calculation difficulty and improves the detection speed of the network while maintaining certain recognition accuracy. The mean average precision (mAP) for face-mask-wearing detection reaches 86% and the average precision (AP) for mask-wearing normative detection reaches 88%. In the resource-constrained device Raspberry Pi 4B, the average detection time after acceleration is 197 ms, which meets the actual application requirements.


Subject(s)
Automobile Driving , COVID-19 , Humans , Recognition, Psychology , SARS-CoV-2
3.
Comput Intell Neurosci ; 2020: 7251280, 2020.
Article in English | MEDLINE | ID: mdl-33293943

ABSTRACT

With a focus on fatigue driving detection research, a fully automated driver fatigue status detection algorithm using driving images is proposed. In the proposed algorithm, the multitask cascaded convolutional network (MTCNN) architecture is employed in face detection and feature point location, and the region of interest (ROI) is extracted using feature points. A convolutional neural network, named EM-CNN, is proposed to detect the states of the eyes and mouth from the ROI images. The percentage of eyelid closure over the pupil over time (PERCLOS) and mouth opening degree (POM) are two parameters used for fatigue detection. Experimental results demonstrate that the proposed EM-CNN can efficiently detect driver fatigue status using driving images. The proposed algorithm EM-CNN outperforms other CNN-based methods, i.e., AlexNet, VGG-16, GoogLeNet, and ResNet50, showing accuracy and sensitivity rates of 93.623% and 93.643%, respectively.


Subject(s)
Algorithms , Neural Networks, Computer
4.
Comput Intell Neurosci ; 2020: 6616584, 2020.
Article in English | MEDLINE | ID: mdl-33381158

ABSTRACT

It is necessary to improve the performance of the object detection algorithm in resource-constrained embedded devices by lightweight improvement. In order to further improve the recognition accuracy of the algorithm for small target objects, this paper integrates 5 × 5 deep detachable convolution kernel on the basis of MobileNetV2-SSDLite model, extracts features of two special convolutional layers in addition to detecting the target, and designs a new lightweight object detection network-Lightweight Microscopic Detection Network (LMS-DN). The network can be implemented on embedded devices such as NVIDIA Jetson TX2. The experimental results show that LMS-DN only needs fewer parameters and calculation costs to obtain higher identification accuracy and stronger anti-interference than other popular object detection models.


Subject(s)
Algorithms , Neural Networks, Computer , Recognition, Psychology
5.
Comput Intell Neurosci ; 2019: 7401235, 2019.
Article in English | MEDLINE | ID: mdl-31781181

ABSTRACT

With the development of computed tomography (CT), the contrast-enhanced CT scan is widely used in the diagnosis of thyroid nodules. However, due to the artifacts and high complexity of thyroid CT images, traditional machine learning has difficulty in detecting thyroid nodules in contrast-enhanced CT. A fully automated detection algorithm for thyroid nodules using contrast-enhanced CT images is developed. A modified U-Net architecture of fully convolutional networks is employed to segment the thyroid region of interest (ROI), and a fusion of convolutional neural networks (CNN-Fs) is proposed to detect benign and malignant thyroid nodules from the ROI images and original contrast-enhanced CT images. Experimental results demonstrate that the proposed cascade and fusion method of multitask convolutional neural networks (CNNs) is efficient in diagnosing thyroid diseases with contrast-enhanced CT images and has superior performance compared with other CNN methods.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Neural Networks, Computer , Thyroid Nodule/diagnostic imaging , Tomography, X-Ray Computed , Contrast Media , Humans , Sensitivity and Specificity , Thyroid Gland/diagnostic imaging , Tomography, X-Ray Computed/methods
6.
Materials (Basel) ; 12(12)2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31226851

ABSTRACT

To increase transmission efficiency and reduce operation cost, dual-phase (DP) steels have been considered for pipeline applications. Welding has to be involved in such applications, which would cause a localized alteration of materials and cause many potential fatigue issues to arise under cyclic loading. In this work, the fatigue crack propagation and fatigue life of simulated heat-affected zone (HAZ) were examined. Results indicate that when the maximum stress is at the same magnitude, the fatigue life at a peak temperature of 1050 °C is very close to that of a peak temperature of 850 °C, and both of them are higher than that of a peak temperature of 1350 °C. The changes in da/dN with ΔK for HAZ subregions are attributed to the variation of crack path and fracture mode during the crack propagation. The fatigue cracks may propagate along the bainite lath preferentially in coarse-grained HAZ (CGHAZ), and the prior austenite grain boundaries can change the crack growth direction. A considerable amount of highly misoriented grain boundaries in fine-grained HAZ (FGHAZ) and intercritical-grained HAZ (ICHAZ) increase the crack growth resistance. The difference of fatigue crack propagation behavior in HAZ subregions between actual and simulated welded joints was also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...