Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.660
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928065

ABSTRACT

Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at T116 increases. However, it remains unclear whether the T116 site and other potential phosphorylation modification sites collaboratively regulate the activity of FECH. In this study, we identified a new phosphorylation site, T218, and explored the allosteric effects of unphosphorylated (UP), PT116, PT218, and PT116 + PT218 states on FECH in the presence and absence of substrates (PPIX and Heme) using molecular dynamics (MD) simulations. Binding free energies were evaluated with the MM/PBSA method. Our findings indicate that the PT116 + PT218 state exhibits the lowest binding free energy with PPIX, suggesting the strongest binding affinity. Additionally, this state showed a higher binding free energy with Heme compared to UP, which facilitates Heme release. Moreover, employing multiple analysis methods, including free energy landscape (FEL), principal component analysis (PCA), dynamic cross-correlation matrix (DCCM), and hydrogen bond interaction analysis, we demonstrated that phosphorylation significantly affects the dynamic behavior and binding patterns of substrates to FECH. Insights from this study provide valuable theoretical guidance for treating conditions related to disrupted heme metabolism, such as various porphyrias and iron-related disorders.


Subject(s)
Catalytic Domain , Ferrochelatase , Heme , Molecular Dynamics Simulation , Protoporphyrins , Ferrochelatase/metabolism , Ferrochelatase/chemistry , Humans , Phosphorylation , Heme/metabolism , Heme/chemistry , Protoporphyrins/chemistry , Protoporphyrins/metabolism , Protein Binding , Binding Sites , Thermodynamics
2.
J Sci Food Agric ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828636

ABSTRACT

BACKGROUND: Heat stress (HS) has been shown to affect reproductive performance and muscle development negatively in animals. N-Acetylcysteine (NAC) plays a pivotal role in enhancing the antioxidant performance in animals as a recognized antioxidant. The present study assesses the potential of NAC to modulate the reproductive performance and antioxidant function in pregnant mice exposed to HS. The role of NAC in muscle development of offspring mice was also explored. RESULTS: The results showed that NAC supplementation from day 12 to day 18 of gestation increased the number of litters and enhanced the antioxidant function in pregnant mice under HS exposure. It improved the weight and body condition significantly in the offspring mice (P < 0.05). The alleviation of HS-induced muscle impairment with NAC was consistent with the alleviation of apoptosis, the enrichment of the proliferation and differentiation in the offspring mice muscle. N-Acetylcysteine also reversed HS-induced reduction in the cross-sectional area of the leg muscle and increased the proportion of myosin heavy chain IIx (MYHCIIx) in the muscle fiber. CONCLUSION: The results of the present study support the use of NAC at a dose of 100 mg kg-1 body weight as supplement for protecting the offspring derived from pregnant mice exposed to HS from muscle impairment by accelerating proliferation and differentiation. © 2024 Society of Chemical Industry.

3.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38869551

ABSTRACT

Magnetic separation of photocatalysts holds great promise for water treatment. A magnetic separation method has a positive effect on the recovery of catalysts after degradation. In this paper, an efficient and reusable catalytic system is developed based on coating magnetic Fe3O4 by depositing Fe2+ on the surface of ZnO. The Fe3O4/ZnO nanocomposite exhibits enhanced performance for organic pollutant degradation. The Fe3O4/ZnO system demonstrates a high photocatalytic activity of 100% degradation efficiency in Rhodamine B (RhB) degradation under UV light irradiation for 50 min. The excellent photocatalytic activity is primarily due to the separation of photogenerated electron-hole pairs being facilitated by the strong interaction between Fe3O4 and ZnO. The induction of the magnetic Fe3O4 endows the Fe3O4/ZnO composite with superior magnetic separation capability from water. Experiments with different radical scavengers revealed that the hydroxyl radical (·OH) is the key reactive radical for the effective degradation of RhB. This work innovatively affords a common interfacial dopant deposition strategy for catalytic application in the degradation of organic dye pollutants and catalyst separation from wastewater efficiently.

4.
J Colloid Interface Sci ; 673: 49-59, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38875797

ABSTRACT

The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm-2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm-2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm-2 and a prominent durability (120 h at 50 mA cm-2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.

5.
J Clin Epidemiol ; : 111424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878836

ABSTRACT

OBJECTIVE: To systematically investigate clinical applicability of the current prognostic prediction models for severe postpartum hemorrhage (SPPH). STUDY DESIGN AND SETTING: A meta-epidemiological study of prognostic prediction models was conducted for SPPH. A pre-designed structured questionnaire was adopted to extract the study characteristics, predictors and the outcome, modelling methods, predictive performance, classification ability for high-risk individuals, and clinical use scenarios. The risk of bias among studies were assessed by the Prediction model Risk Of Bias ASsessment Tool. RESULTS: Twenty-two studies containing 27 prediction models were included. The number of predictors in the final models varied from 3 to 53. However, one-third of the models (11) did not clearly specify the timing of predictor measurement. Calibration was found to be lacking in 10 (37.0%) models. Among 20 models had an incidence rate of predicted outcome below 15.0%, none of the models estimated the area under the precision-recall curve, and all reported positive predictive values were below 40.0%. Only two (7.4%) models specified the target clinical setting, while seven (25.9%) models clarified the intended timing of model use. Lastly, all 22 studies were deemed to be at high risk of bias. CONCLUSION: Current SPPH prediction models have limited clinical applicability due to methodological flaws, including unclear predictor measurement, inadequate calibration assessment, and insufficient evaluation of classification ability. Additionally, there is a lack of clarity regarding the timing for model use, target users, and clinical settings. These limitations raise concerns about the reliability and usefulness of these models in real-world clinical practice.

6.
Inorg Chem ; 63(24): 11424-11430, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38841806

ABSTRACT

Nanocrystals (NCs) exposed with high-index facets usually show enhanced electrocatalytic performances. However, it is a great challenge to persevere with high-index facets against their high surface energy during the synthesis. Herein, we successfully synthesize concave hexoctahedral (c-HOH) Pd NCs exposed with 48 high-index {741} facets using a facile one-pot wet-chemical protocol. Control experiments illustrate that l-ascorbic acid plays a critical role in the formation of the c-HOH morphology, acting as both reducing and capping agents. Moreover, we can extend the synthesis for fabricating c-HOH Pd@Pt core-shell NCs by simply introducing a Pt precursor into the reaction solution, attaining remarkably boosted electrocatalysis for methanol electrooxidation reaction (MOR). Integrating the merits of {741} facets, concave structure, and ligand and strain effect of the core-shell structure, c-HOH Pd4@Pt1 core-shell NCs showed an excellent MOR mass activity of 1.18 A mgPGM-1 or 3.60 A mgPt-1, which is 3.80 or 11.61 times higher than that of commercial Pt/C, respectively.

7.
Cancer Biol Med ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907517

ABSTRACT

OBJECTIVE: Colorectal cancer (CRC) is a prevalent malignant tumor with a high fatality rate. CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator. Nevertheless, the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied. METHODS: Western blot, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression. The CCK-8 assay was used to assess cell growth. The Transwell assay was used to detect invasion and migration of cells. The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4 (or SP1) bind to one another. An in vivo assay was used to measure tumor growth. RESULTS: It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues. CircPDIA4 knockdown prevented the invasion, migration, and proliferation of cells in CRC. Additionally, the combination of circPDIA4 and miR-9-5p was confirmed, as well as miR-9-5p binding to SP1. Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC. In addition, SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription. CircPDIA4 was shown to facilitate tumor growth in an in vivo assay. CONCLUSIONS: The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression. This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.

8.
Sci Rep ; 14(1): 14012, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890346

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous hematological tumor with poor immunotherapy effect. This study was to develop a monocyte/macrophage-related prognostic risk score (MMrisk) and identify new therapeutic biomarkers for AML. We utilized differentially expressed genes (DEGs) in combination with single-cell RNA sequencing to identify monocyte/macrophage-related genes (MMGs). Eight genes were selected for the construction of a MMrisk model using univariate Cox regression analysis and LASSO regression analysis. We then validated the MMrisk on two GEO datasets. Lastly, we investigated the immunologic characteristics and advantages of immunotherapy and potential targeted drugs for MMrisk groups. Our study identified that the MMrisk is composed of eight MMGs, including HOPX, CSTB, MAP3K1, LGALS1, CFD, MXD1, CASP1 and BCL2A1. The low MMrisk group survived longer than high MMrisk group (P < 0.001). The high MMrisk group was positively correlated with B cells, plasma cells, CD4 memory cells, Mast cells, CAFs, monocytes, M2 macrophages, Endothelial, tumor mutation, and most immune checkpoints (PD1, Tim-3, CTLA4, LAG3). Furthermore, drug sensitivity analysis showed that AZD.2281, Axitinib, AUY922, ABT.888, and ATRA were effective in high-risk MM patients. Our research shows that MMrisk is a potential biomarker which is helpful to identify the molecular characteristics of AML immunology.


Subject(s)
Leukemia, Myeloid, Acute , Macrophages , Monocytes , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Monocytes/immunology , Monocytes/metabolism , Prognosis , Macrophages/immunology , Macrophages/metabolism , Female , Biomarkers, Tumor/genetics , Male , Middle Aged , Immunotherapy/methods , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Leukemic
9.
Adv Healthc Mater ; : e2400780, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850154

ABSTRACT

Cell encapsulation technology, crucial for advanced biomedical applications, faces challenges in existing microfluidic and electrospray methods. Microfluidic techniques, while precise, can damage vulnerable cells, and conventional electrospray methods often encounter instability and capsule breakage during high-throughput encapsulation. Inspired by the transformation of the working state from unstable dripping to stable jetting triggered by local electric potential, this study introduces a superimposed electric field (SEF)-enhanced electrospray method for cell encapsulation, with improved stability and biocompatibility. Utilizing stiffness theory, we quantitatively analyze the stability of the electrospray, whose stiffness is five times stronger under conical confinement. The SEF technique enabled rapid, continuous production of ∼300 core-shell capsules per second in an aqueous environment, significantly improving cell encapsulation efficiency. Our method demonstrated remarkable potential as exemplified in two key applications: 1) a 92-fold increase in human-derived induced pluripotent stem cells (iPSCs) expansion over 10 days, outperforming traditional 2D cultures in both growth rate and pluripotency maintenance, and 2) the development of liver capsules for steatosis modeling, exhibiting normal function and biomimetic lipid accumulation. The SEF-enhanced electrospray method presents a significant advancement in cell encapsulation technology. It offers a more efficient, stable, and biocompatible approach, opening new possibilities in clinical transplantation, drug screening, and cell therapy. This article is protected by copyright. All rights reserved.

10.
Front Pediatr ; 12: 1410976, 2024.
Article in English | MEDLINE | ID: mdl-38887563

ABSTRACT

Bladder urachal cysts in children are a rare form of urachal abnormality. In this paper, we present a case of atypical imaging that presented with lower abdominal pain accompanied by hematuria, resulting in the formation of both internal and external urachal cysts in a child. A 6-year-old male child presented with repeated abdominal pain over a span of 4 days. Color ultrasound and pelvic CT scans revealed a soft tissue lesion on the right anterior wall of the bladder with an unclear boundary from the bladder wall. Voiding Cystourethrography (VCUG) showed no significant abnormalities in the bladder, while routine urine testing was positive for hematuria. A cystoscopy was simultaneously performed with a laparoscopic resection of the urachal cyst. Intraoperative cystoscopy identified the intravesical lesion, which was precisely removed using a cystoscope-assisted laparoscopy. Postoperative pathology confirmed that both extravesical and intravesical lesions were consistent with a urachal cyst. No complications were observed after the operation, and no recurrence was noted during a six-month follow-up. Therefore, for urachal cysts at the bladder's end, the possibility of intravesical urachal cysts should not be excluded, especially in patients with microscopic hematuria. We recommend performing cystoscopy simultaneously with laparoscopic urachal cyst removal to avoid missing intravesical lesions.

12.
Toxicol In Vitro ; : 105879, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901786

ABSTRACT

In this study, we designed an in vitro administration device based on compartment model theory and utilized it to construct an in vitro simulated one compartment extravascular administration model of copper chloride. Within the Cmax range of 3.91-1000.00 µM, the measured concentration-time curves of the simulated one compartment extravascular administration model almost coincide with the corresponding theoretical curves. The measured values of toxicokinetic parameters, including ke, T1/2, ka, T1/2a, Tmax, Cmax, CL, and AUC0-∞ are close to the corresponding theoretical values. The fitting coefficients are >0.9990. In simulated one compartment extravascular administration and classic in vitro administration, copper chloride dose-dependently induced HepG2 cell death. When Cmax/administration concentration is equal, classic in vitro administration induces a higher cell death rate than simulated one compartment extravascular administration. However, there is no significant difference in inducing cell death between the two administration models when area under the curve is equal. In conclusion, the device designed in this study can be used to in vitro simulate one compartment extravascular administration, making in vitro toxicity testing more similar to in vivo scenarios. There are differences in copper chloride induced HepG2 cell death between simulated one compartment extravascular administration and classic in vitro administration.

13.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912794

ABSTRACT

Decoction formula is the most commonly used dosage form in traditional Chinese medicine and applied in clinical practice for thousands of years by trans-oral administration, which is characterized by quick effect, easy absorption, and individualized treatment based on the specific syndromes of patients. The quality of the decoction formula is directly responsible for the clinical efficacy of traditional Chinese medicine; therefore, the standardization process of the decoction formula is important to avoid differences in decoction quality caused by subjective factors. Meanwhile, due to the limitations of performing clinical experiments, small animals bearing human diseases, such as mice, are often used in medical research to explore the therapeutic efficacy and comprehensive mechanisms of different interventions, including the decoction formula for traditional Chinese medicine. Consequently, as an important trans-oral administration method, the skilled gavage technique is particularly important to avoid potential esophagus damage and drug spillage, which will ensure an equal amount of medicine being administered to each model animal, leading to accurate experimental results. Furthermore, the standardized method of decoction formula preparation and skilled gavage strategy are necessary to protect animal welfare and minimize the number of animals used. Here, we reported a detailed standardization process of the decoction formula and gavage technique with Yiqi Jiedu decoction in osteosarcoma mouse model as an example. The efficacy was evaluated by the tumor volume. This protocol will maximize animal protection and improve the reliability of research data, therefore providing effective strategies for future investigating therapeutic efficacy and molecular mechanisms of decoction formula for traditional Chinese medicine in vivo.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Osteosarcoma , Animals , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Mice , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional/methods , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Disease Models, Animal , Administration, Oral
15.
Math Biosci Eng ; 21(4): 5164-5180, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38872531

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is a malignant blood disorder, particularly detrimental to children and adolescents, with recurrent or unresponsive cases contributing significantly to cancer-associated fatalities. IKBKE, associated with innate immunity, tumor promotion, and drug resistance, remains poorly understood in the context of B-ALL. Thus, this research aimed to explore the impact of the IKBKE inhibitor MCCK1 on B-ALL cells. The study encompassed diverse experiments, including clinical samples, in vitro and in vivo investigations. Quantitative real-time fluorescence PCR and protein blotting revealed heightened IKBKE mRNA and protein expression in B-ALL patients. Subsequent in vitro experiments with B-ALL cell lines demonstrated that MCCK1 treatment resulted in reduced cell viability and survival rates, with flow cytometry indicating cell cycle arrest. In vivo experiments using B-ALL mouse tumor models substantiated MCCK1's efficacy in impeding tumor proliferation. These findings collectively suggest that IKBKE, found to be elevated in B-ALL patients, may serve as a promising drug target, with MCCK1 demonstrating potential for inducing apoptosis in B-ALL cells both in vitro and in vivo.


Subject(s)
Apoptosis , Cell Proliferation , I-kappa B Kinase , Animals , Humans , Mice , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , Cell Survival/drug effects , Male , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Child , Adolescent , Xenograft Model Antitumor Assays , Protein Kinase Inhibitors/pharmacology
16.
Chemistry ; : e202401853, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825564

ABSTRACT

Phosphaphenalenes, extended π conjugates with the incorporation of phosphorus, are attractive avenues towards molecular materials for the applications in organic electronics, but their electron accepting ability have not been investigated. In this study, we present systematic studies on the reductive behavior of a representative phosphaphenalene and its oxide by chemical and electrochemical methods. The chemical reduction of the phosphaphenalene by alkali metals reveals the facile P‒C bond cleavage to form phosphaphenalenide anion, which functions as a transfer block for structure modification on the phosphorus atom. In contrast, the pentavalent P-oxide reacts with one or two equivalents of elemental sodium to form stable radical anion and dianion salts, respectively.

17.
Adv Sci (Weinh) ; : e2400596, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887178

ABSTRACT

Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.

18.
Transl Oncol ; 46: 102031, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861853

ABSTRACT

BACKGROUND: Although the use of anti-PD-1 antibodies has fundamentally changed traditional cancer treatment, most patients are resistant to anti-PD-1 treatment. Glucocorticoids (GCs) play an important role in tumorigenesis and tumor progression, but the role of endogenous GCs in resistance to anti-PD-1 antibody therapy remains unclear. METHODS: Single cell-derived cell lines (SCDCLs) were generated from a colorectal cancer cell line (CT26) using limiting dilution. We analyzed tumor tissues from anti-PD-1 antibody-treated and untreated mice inoculated with SCDCLs via transcriptome sequencing and flow cytometry to detect pathway activity and immune cell composition changes in the tumor microenvironment. RESULTS: Five SCDCLs were inoculated into wild-type BALB/c mice (all tumorigenic). Single-cell clone (SCC)-2 exhibited the slowest growth rates both in vivo and in vitro compared to other single-cell clones, and better long-term survival than SCC1 and CT26. Flow cytometry showed that SCC2 tumor-bearing mice exhibited significantly higher infiltration of T cells within the tumor tissue, and higher expression of PD-1 on these T cells than the other groups in vivo. However, the SCC2 group showed no response to anti-PD-1 therapy. Transcriptome analysis revealed that the SCC2 group exhibited increased expression of genes related to GC (Hsd11b1, Sgk3, Tgfbr2, and Il7r) compared to SCC2-anti-PD-1 treated tumors. CONCLUSIONS: GC pathway activation is related to resistance to anti-PD-1 therapy.

19.
Drug Resist Updat ; 76: 101114, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38924995

ABSTRACT

Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.

20.
Cell Rep ; 43(7): 114377, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889005

ABSTRACT

Bone tissue represents the most frequent site of cancer metastasis. We developed a hemichannel-activating antibody, Cx43-M2. Cx43-M2, directly targeting osteocytes in situ, activates osteocytic hemichannels and elevates extracellular ATP, thereby inhibiting the growth and migration of cultured breast and osteosarcoma cancer cells. Cx43-M2 significantly decreases breast cancer metastasis, osteosarcoma growth, and osteolytic activity, while improving survival rates in mice. The antibody's inhibition of breast cancer and osteosarcoma is dose dependent in both mouse and human cancer metastatic models. Furthermore, Cx43-M2 enhances anti-tumor immunity by increasing the population and activation of tumor-infiltrating immune-promoting effector T lymphocytes, while reducing immune-suppressive regulatory T cells. Our results suggest that the Cx43-M2 antibody, by activating Cx43 hemichannels and facilitating ATP release and purinergic signaling, transforms the cancer microenvironment from a supportive to a suppressive state. Collectively, our study underscores the potential of Cx43-M2 as a therapeutic for treating breast cancer bone metastasis and osteosarcoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...