Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.911
Filter
2.
Adv Mater ; : e2401445, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233550

ABSTRACT

RNA therapeutics have been successfully transitioned into clinical applications. Lipid nanoparticles (LNPs) are widely employed as nonviral delivery vehicles for RNA therapeutics in commercial vaccine and gene therapy products. However, the bottleneck in expanding the clinical applications of LNP-based RNA therapeutics lies in the tendency of these nanoparticles to preferentially accumulate in the liver. This challenge underscores the need to design LNPs capable of delivering RNA to organs beyond the liver. In this perspective, recent progress is discussed in developing strategies for designing LNPs to deliver RNA to extrahepatic organs. Organ-selective targeting capability is achieved by either altering the composition of the LNP formulation or chemically modifying the ionizable lipid component. Both approaches result in changes in the physicochemical properties of the LNPs, which subsequently alters the composition of the biomolecular corona that adsorbs onto its surface following administration. The biomolecular corona is a known mechanism that mediates organ-selective LNP delivery. Furthermore, this perspective aims to provide an outlook on shaping the next-generation LNP delivery platforms. Potential efforts include targeting specific cell types, improving the safety profile of LNPs, and developing strategies to overcome physiological barriers against organ-specific delivery.

3.
Acta Biomater ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222706

ABSTRACT

The escalating menace of antimicrobial resistance (AMR) presents a profound global threat to life and assets. However, the incapacity of metal ions/reactive oxygen species (ROS) or the indiscriminate intrinsic interaction of cationic groups to distinguish between bacteria and mammalian cells undermines the essential selectivity required in these nanomaterials for an ideal antimicrobial agent. Hence, we devised and synthesized a range of biocompatible mixed-charge hyperbranched polymer nanoparticles (MCHPNs) incorporating cationic, anionic, and neutral alkyl groups to effectively combat multidrug-resistant bacteria and mitigate AMR. This outcome stemmed from the structural, antibacterial activity, and biocompatibility analysis of seven MCHPNs, among which MCHPN7, with a ratio of cationic groups, anionic groups, and long alkyl chains at 27:59:14, emerged as the lead candidate. Importantly, owing to inherent differences in membrane potential among diverse species, alongside its nano-size (6 - 15 nm) and high hydrophilicity (Kow = 0.04), MCHPN7 exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index > 564) in vitro and in vivo. By inducing physical membrane disruption, MCHPN7 effectively eradicated antibiotic-resistant bacteria and significantly delayed the emergence of bacterial resistance. Utilized as a coating, MCHPN7 endowed initially inert surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses in mouse models. This research heralds the advent of biocompatible polymer nanoparticles and harbors significant implications in our ongoing combat against AMR. STATEMENT OF SIGNIFICANCE: The escalating prevalence of antimicrobial resistance (AMR) has been acknowledged as one of the most significant threats to global health. Therefore, a series of mixed-charge hyperbranched polymer nanoparticles (MCHPNs) with selective antibacterial action were designed and synthesized. Owing to inherent differences in membrane potential among diverse species and high hydrophilicity (Kow = 0.04), the optimal nanoparticles exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index >564) and significantly delayed the emergence of bacterial resistance. Importantly, they endowed surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses. Furthermore, the above findings focus on addressing the problem of AMR in Post-Pandemic, which will for sure attract attention from both academic and industry research.

4.
Int J Biol Macromol ; 279(Pt 2): 135299, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233171

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes enormous economic losses to the pork industry, and its extensive cell tropism poses a substantial challenge to public health and safety. However, the invasion mechanisms and relevant host factors of PEDV remain poorly understood. In this study, we identified 422 differentially expressed genes related to PEDV infection through transcriptome analysis. Among these, Annexin A2 (ANXA2), Prohibitin-2 (PHB2), and Caveolin-2 (CAV2) were identified through screening and verifying as having a specific interaction with the PEDV S protein, and positive regulation of PEDV internalization was validated by siRNA and overexpression tests. Subsequently, using host membrane protein interaction networks and co-immunoprecipitation analysis, we found that ANXA2 PHB2 or CAV2 directly interact with Rab11a. Next, we constructed a pseudovirus model (LV-PEDV S-GFP) to further confirm that the downregulation of Rab11a could promote PEDV invasion. In detail, ANXA2, PHB2, or CAV2 promoted PEDV invasion via downregulating Rab11a. Furthermore, we showed that the S-protein fusion peptide (FP) was sufficient for S-protein interaction with ANXA2, PHB2, CAV2, and Rab11a, and the addition of exogenous GTP could regulate the efficiency of PEDV invasion. Collectively, ANXA2, PHB2, or CAV2 influenced the membrane fusion of PEDV with host cells through the host restriction factor Rab11a. This study could be targeted for future research to develop strategies for the control of PEDV.

5.
Colloids Surf B Biointerfaces ; 245: 114198, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39236362

ABSTRACT

The stimuli-responsive nano-carriers are at the forefront of research in nanotechnology and materials science. These advanced systems are designed to alter their physicochemical properties upon exposure to specific stimuli, enabling controllable and targeted delivery of therapeutic agents. Nevertheless, limited endosomal escape reduces the drug bioavailability in clinical use. We herein report azobenzene (Azo)-based liposomes, prepared by co-assembling the photoisomerizable cationic Azo lipids and helper lipids, which achieve controllable doxorubicin (Dox) release and enhanced cytosolic transport upon light irradiation. Azo lipids undergo reversible isomerization between cis-isomers and trans-isomer when received UV and visible (Vis) light irradiation, causing liposomal membrane permeability changes for controlled drug release. Moreover, the nanomechanical action created by the isomerization of Azo lipids promotes the endosomal escape of the liposomes. DSPC-Azo liposomes, with minimal Dox leakage, showed significant tumor cell killing upon irradiation. For in vivo study, we co-encapsulated the upconverting nanoparticles (UCNPs), which can convert the near-infrared (NIR) light into UV/Vis emissions, facilitating Azo units activation. UCNP/Dox-loaded DSPC-Azo liposomes inhibited tumor growth under NIR irradiation in a 4T1 tumor-bearing mouse model.

6.
mBio ; : e0199324, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235230

ABSTRACT

Malassezia globosa is a lipophilic basidiomycetous yeast that occurs abundantly in breast tumors and that may contribute to a shortened overall survival of breast cancer (BRAC) patients, suggesting that the yeast may participate in the carcinogenesis of BRAC. However, the mechanisms involved in the M. globosa-based acceleration of BRAC are unknown. Here, we show that M. globosa can colonize mammary tissue in 7,12-dimethylbenz[a] anthracene-induced mice. The abundance of M. globosa shortened the overall survival and increased the tumor incidence. Transcriptome data illustrated that IL-17A plays a key role in tumor growth due to M. globosa colonization, and tumor-associated macrophage infiltration was elevated during M. globosa colonization which triggers M2 polarization of macrophages via toll-like receptors 4/nuclear factor kappa-B (Nf-κB) signaling. Our results show that the expression of sphingosine kinase 1 (Sphk1) is increased in breast tumors after inoculation with M. globosa. Moreover, we discovered that Sphk1-specific small interfering RNA blocked the formation of lipid droplets, which can effectively alleviate the expression of the signal transducer and activator of the transcription 3 (STAT3)/Nf-κB pathway. Taken together, our results demonstrate that M. globosa could be a possible factor for the progression of BRAC. The mechanisms by which M. globosa promotes BRAC development involve the IL-17A/macrophage axis. Meanwhile, Sphk1 overexpression was induced by M. globosa infection, which also promoted the proliferation of MCF-7 cells.IMPORTANCELiterature has suggested that Malassezia globosa is associated with breast tumors; however, this association has not been confirmed. Here, we found that M. globosa colonizes in breast fat pads leading to tumor growth. As a lipophilic yeast, the expression of sphingosine kinase 1 (Sphk1) was upregulated to promote tumor growth after M. globosa colonization. Moreover, the IL-17A/macrophages axis plays a key role in mechanisms involved in the M. globosa-induced breast cancer acceleration from the tumor immune microenvironment perspective.

7.
Brain Imaging Behav ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235695

ABSTRACT

Resting state correlations between blood oxygenation level dependent (BOLD) MRI signals from voxels in white matter (WM) are demonstrably anisotropic, so that functional correlation tensors (FCT) may be used to quantify the underlying microstructure of BOLD effects in WM tracts. However, the overall spatial distribution of FCTs and their metrics in specific populations has not yet been established, and the factors that affect their precise arrangements remain unclear. Changes in WM occur with normal aging, and these may be expected to affect FCTs. We hypothesized that FCTs exhibit a characteristic spatial pattern and may show systematic changes with aging or other factors. Here we report our analyses of the FCT characteristics of fMRI images of a large cohort of 461 cognitively normal subjects (190 females, 271 males) sourced from the Open Access Series of Imaging Studies (OASIS), with age distributions of 42 y/o - 95 y/o. Group averages and statistics of FCT indices, including axial functional correlations, radial functional correlations, mean functional correlations and fractional anisotropy, were quantified in WM bundles defined by the JHU ICBM-DTI-81 WM atlas. In addition, their variations with normal aging were examined. The results revealed a dimorphic distribution of changes in FCT metrics with age, with decreases of the functional correlations in some regions and increases in others. Supplementary analysis revealed that females exhibited significant age effects on a greater number of WM areas, but the interaction between age and sex was not significant. The findings demonstrate the reproducibility of the spatial distribution of FCT metrics and reveal subtle regional changes with age.

8.
Eur Spine J ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103616

ABSTRACT

BACKGROUND: Osteoporotic vertebral compression fracture (OVCF) is a common consequence of osteoporosis and can significantly impact the quality of life for affected individuals. Despite treatment options such as vertebroplasty and kyphoplasty, many patients continue to experience residual back pain (RBP) even after the fracture has healed. The incidence of RBP after OVCF treatment varies among studies, and there is a need for further research to understand the risk factors associated with RBP. METHODS: A systematic review and meta-analysis were conducted following the PRISMA guidelines. Electronic databases were searched, and relevant studies were selected based on inclusion and exclusion criteria. Data extraction and quality assessment were performed independently by two authors. Statistical analysis included single-proportion meta-analyses and pooling of odds ratios (OR) using the inverse-variance method, to calculate the overall incidences of RBP and cement leakage and identify risk factors associated with RBP. RESULTS: A total of 19 studies were included in the analysis. The overall incidences of RBP and cement leakage were found to be 16% and 18%, respectively. Several risk factors were identified, including gender, bone mineral density, depression, baseline visual analog scale (VAS) score, intravertebral vacuum cleft, number of fractured segments, cement distribution, history of vertebral fracture, thoracolumbar fascial injury, and fracture non-union. CONCLUSIONS: This study provides potential value within the scope of the incidence and risk factors of RBP following treatment of OVCFs. The identified risk factors can help clinicians identify high-risk patients and tailor appropriate interventions. Future research should focus on standardizing the definition of RBP and patient selection criteria to improve the accuracy of estimates and facilitate better management strategies for OVCF patients.

9.
Global Spine J ; : 21925682241270036, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109794

ABSTRACT

STUDY DESIGN: Cross-sectional study. OBJECTIVES: Imaging classification of adolescent idiopathic scoliosis (AIS) is directly related to the surgical strategy, but the artificial classification is complex and depends on doctors' experience. This study investigated deep learning-based automated classification methods (DL group) for AIS and validated the consistency of machine classification and manual classification (M group). METHODS: A total of 506 cases (81 males and 425 females) and 1812 AIS full spine images in the anteroposterior (AP), lateral (LAT), left bending (LB) and right bending (RB) positions were retrospectively used for training. The mean age was 13.6 ± 1.8. The mean maximum Cobb angle was 46.8 ± 12.0. U-Net semantic segmentation neural network technology and deep learning methods were used to automatically segment and establish the alignment relationship between multiple views of the spine, and to extract spinal features such as the Cobb angle. The type of each test case was automatically calculated according to Lenke's rule. An additional 107 cases of adolescent idiopathic scoliosis imaging were prospectively used for testing. The consistency of the DL group and M group was compared. RESULTS: Automatic vertebral body segmentation and recognition, multi-view alignment of the spine and automatic Cobb angle measurement were implemented. Compare to the M group, the consistency of the DL group was significantly higher in 3 aspects: type of lateral convexity (0.989 vs 0.566), lumbar curvature modifier (0.932 vs 0.738), and sagittal plane modifier (0.987 vs 0.522). CONCLUSIONS: Deep learning enables automated Cobb angle measurement and automated Lenke classification of idiopathic scoliosis whole spine radiographs with higher consistency than manual measurement classification.

10.
Cell Commun Signal ; 22(1): 391, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113090

ABSTRACT

BACKGROUND: Approximately 25-30% of patients with acute myeloid leukemia (AML) have FMS-like receptor tyrosine kinase-3 (FLT3) mutations that contribute to disease progression and poor prognosis. Prolonged exposure to FLT3 tyrosine kinase inhibitors (TKIs) often results in limited clinical responses due to diverse compensatory survival signals. Therefore, there is an urgent need to elucidate the mechanisms underlying FLT3 TKI resistance. Dysregulated sphingolipid metabolism frequently contributes to cancer progression and a poor therapeutic response. However, its relationship with TKI sensitivity in FLT3-mutated AML remains unknown. Thus, we aimed to assess mechanisms of FLT3 TKI resistance in AML. METHODS: We performed lipidomics profiling, RNA-seq, qRT-PCR, and enzyme-linked immunosorbent assays to determine potential drivers of sorafenib resistance. FLT3 signaling was inhibited by sorafenib or quizartinib, and SPHK1 was inhibited by using an antagonist or via knockdown. Cell growth and apoptosis were assessed in FLT3-mutated and wild-type AML cell lines via Cell counting kit-8, PI staining, and Annexin-V/7AAD assays. Western blotting and immunofluorescence assays were employed to explore the underlying molecular mechanisms through rescue experiments using SPHK1 overexpression and exogenous S1P, as well as inhibitors of S1P2, ß-catenin, PP2A, and GSK3ß. Xenograft murine model, patient samples, and publicly available data were analyzed to corroborate our in vitro results. RESULTS: We demonstrate that long-term sorafenib treatment upregulates SPHK1/sphingosine-1-phosphate (S1P) signaling, which in turn positively modulates ß-catenin signaling to counteract TKI-mediated suppression of FLT3-mutated AML cells via the S1P2 receptor. Genetic or pharmacological inhibition of SPHK1 potently enhanced the TKI-mediated inhibition of proliferation and apoptosis induction in FLT3-mutated AML cells in vitro. SPHK1 knockdown enhanced sorafenib efficacy and improved survival of AML-xenografted mice. Mechanistically, targeting the SPHK1/S1P/S1P2 signaling synergizes with FLT3 TKIs to inhibit ß-catenin activity by activating the protein phosphatase 2 A (PP2A)-glycogen synthase kinase 3ß (GSK3ß) pathway. CONCLUSIONS: These findings establish the sphingolipid metabolic enzyme SPHK1 as a regulator of TKI sensitivity and suggest that combining SPHK1 inhibition with TKIs could be an effective approach for treating FLT3-mutated AML.


Subject(s)
Glycogen Synthase Kinase 3 beta , Leukemia, Myeloid, Acute , Phosphotransferases (Alcohol Group Acceptor) , Protein Phosphatase 2 , beta Catenin , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , beta Catenin/metabolism , beta Catenin/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Animals , Mice , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/antagonists & inhibitors , Cell Line, Tumor , Sorafenib/pharmacology , Apoptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Cell Proliferation/drug effects , Drug Synergism , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics
11.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117859

ABSTRACT

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Subject(s)
Depressive Disorder, Major , Transcriptome , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/physiopathology , Female , Male , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Middle Aged , Magnetic Resonance Imaging , Gene Expression Profiling
12.
Opt Lett ; 49(15): 4306-4309, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090920

ABSTRACT

Dirac degeneracy is a fourfold band crossing point in a three-dimensional momentum space, which possesses Fermi-arc-like surface states, and has extensive application prospects. In this work, we systematically study the exceptional effects of the robust chiral surface wave supported by photonic Dirac semimetal acts on the dielectric particles. Theoretical results show that orthogonal electromagnetic modes and helical or chiral whispering gallery modes (WGMs) of dielectric particles can be efficiently excited by the unidirectional spin-polarized surface wave. More importantly, optical forces exerted by the spin-polarized surface wave exhibit chirality-dependent symmetric behavior and high chiral Q factor with precise size selectivity. Our findings may provide potential applications in the area of chiral microcavity, spin optical devices, and optical manipulations.

13.
Huan Jing Ke Xue ; 45(8): 4696-4708, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168688

ABSTRACT

Accurately assessing the changes in soil organic carbon storage (SOCS) before and after the Grain for Green Project (GFG) in the Loess Plateau (LP) and exploring the relationship between its spatial and temporal distribution and the influencing factors were important references for the development of regional recycling as well as the formulation of ecological protection policies. Based on the data of climate, human activities, and SOCD in the surface (0-20 cm) and deep (0-100 cm) soil before and after GFG in the LP from 2001 to 2020, we investigated the changes in SOCD at different spatial and temporal scales by using the methods of trend analysis, the kriging method, and variance partitioning analysis. The results showed that: ① Before and after the GFG, the surface SOCS of the whole region increased by 8 338.7×104 t; the deep SOCS increased by 1 160.02×104 t. ② In each bioclimatic subregion, the whole-region average SOCD of Ⅰ (Semi-Humid Forest Region), Ⅱ (Semi-Humid Semi-Arid Forest and Grassland Region), and Ⅲ (Semi-Arid Typical Grassland Region) showed a significant increasing trend, with a decreasing trend in Ⅳ (arid semi-arid desert grassland area) and Ⅴ (arid desert area). ③ The average surface SOCS increase in different ecosystems was ranked as follows: cropland > grassland > woodland > shrubs > bare land and sparse vegetation. The deep soil increase was ranked as follows: grassland > cropland > woodland > shrubs > bare land and sparse vegetation. ④ Climate factors were the most important driving factors for changes in SOCD; the annual average temperature and precipitation were significantly positively correlated with changes in SOCD. The results of the study could provide data support for regional ecological management and land use policy formulation to promote high quality development of the ecological environment in the LP.


Subject(s)
Carbon , Climate Change , Soil , Soil/chemistry , China , Carbon/analysis , Organic Chemicals/analysis , Conservation of Natural Resources , Human Activities , Forests , Ecosystem , Environmental Monitoring/methods , Altitude , Grassland , Carbon Sequestration , Humans , Crops, Agricultural/growth & development
14.
Ann Intensive Care ; 14(1): 127, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162882

ABSTRACT

BACKGROUND: A combination of prone positioning (PP) and venovenous extracorporeal membrane oxygenation (VV-ECMO) is safe, feasible, and associated with potentially improved survival for severe acute respiratory distress syndrome (ARDS). However, whether ARDS patients, especially non-COVID-19 patients, placed in PP before VV-ECMO should continue PP after a VV-ECMO connection is unknown. This study aimed to test the hypothesis that early use of PP during VV-ECMO could increase the proportion of patients successfully weaned from ECMO support in severe ARDS patients who received PP before ECMO. METHODS: In this prospective observational study, patients with severe ARDS who were treated with VV-ECMO were divided into two groups: the prone group and the supine group, based on whether early PP was combined with VV-ECMO. The proportion of patients successfully weaned from VV-ECMO and 60-day mortality were analyzed before and after propensity score matching. RESULTS: A total of 165 patients were enrolled, 50 in the prone and 115 in the supine group. Thirty-two (64%) and 61 (53%) patients were successfully weaned from ECMO in the prone and the supine groups, respectively. The proportion of patients successfully weaned from VV-ECMO in the prone group tended to be higher, albeit not statistically significant. During PP, there was a significant increase in partial pressure of arterial oxygen (PaO2) without a change in ventilator or ECMO settings. Tidal impedance shifted significantly to the dorsal region, and lung ultrasound scores significantly decreased in the anterior and posterior regions. Forty-five propensity score-matched patients were included in each group. In this matched sample, the prone group had a higher proportion of patients successfully weaned from VV-ECMO (64.4% vs. 42.2%; P = 0.035) and lower 60-day mortality (37.8% vs. 60.0%; P = 0.035). CONCLUSIONS: Patients with severe ARDS placed in PP before VV-ECMO should continue PP after VV-ECMO support. This approach could increase the probability of successful weaning from VV-ECMO. TRIAL REGISTRATION: ClinicalTrials.Gov: NCT04139733. Registered 23 October 2019.

15.
J Natl Cancer Inst ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150790

ABSTRACT

BACKGROUND: Despite the recognized role of visceral adipose tissue (VAT) in carcinogenesis, its independent association with cancer risk beyond traditional obesity measures remains unknown due to limited availability of imaging data. METHODS: We developed an estimation equation for VAT volume (L) using Elastic Net Regression based on demographic and anthropometric data in a subcohort of participants in the UK Biobank (UKB; N = 23,148) with abdominal MRI scans. This equation was externally validated in 2,713 participants from the 2017-2018 National Health and Nutrition Examination Survey (NHANES) according to sex, age, and race groups. We then applied the equation to the overall UKB cohort of 461,665 participants to evaluate the prospective association between estimated VAT (eVAT) and cancer risk using Cox proportional hazards models. We also calculated the population attributable risk (PAR) of cancer associated with eVAT and BMI. RESULTS: eVAT showed a high correlation with measured VAT in internal and external validations (r = 0.81-0.86). During a median 12-year follow-up in the UKB, we documented 37,397 incident cancer cases; eVAT was significantly associated with elevated risk of obesity-related and individual cancers, independent of BMI and waist circumference. PAR for total cancer associated with high (quartiles 2-4 vs 1) eVAT (9.0-11.6%) was higher than high BMI (Q2-4 vs 1; 5.0-8.2%). CONCLUSIONS: eVAT showed robust performance in both UKB and NHANES and was associated with cancer risk independent of BMI and waist circumference. This study provides a potential clinical tool for VAT estimation and underscores that VAT can be an important target for cancer prevention.

17.
J Org Chem ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145751

ABSTRACT

Herein, we present a Ni-catalyzed direct cross-coupling of heteroaromatic thioethers with aryl iodides via selective C(sp2)-S bond cleavage under reductive conditions, thereby providing various biaryl frameworks with high efficiency. Mechanistic studies suggested Mo(CO)6 played a crucial role in facilitating the activation of the C(sp2)-S bond. This protocol demonstrated a wide substrate scope, operational simplicity, and good functional group compatibility. Furthermore, the utility of this reaction was highlighted by facile scale-up and sequential modification of heteroaryl frameworks.

18.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3758-3768, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099350

ABSTRACT

The function of the Trihelix transcription factor is that it plays an important role in many abiotic stresses, especially in the signaling pathway of low temperature, drought, flood, saline, abscisic acid, methyl jasmonate, and other abiotic stresses. However, there are few studies on the Trihelix gene family of ginseng. In this study, 41 Trihelix gene family members were identified and screened from the ginseng genome database, and their physicochemical properties, cis-acting elements, subcellular localization, chromosomal assignment, and abiotic stress-induced expression patterns were analyzed by bioinformatics methods. The results showed that 85% of Trihelix family members of ginseng were located in the nucleus, and the main secondary structure of Trihelix protein was random coil and α helix. In the promoter region of Trihelix, cis-acting regulatory elements related to various abiotic stresses such as low temperature, hormone response, and growth and development were identified. Through the collinearity analysis of interspecific Trihelix transcription factors of model plants Arabidopsis thaliana and ginseng, 19 collinear gene pairs were found between A. thaliana and ginseng, and no collinear gene pairs existed on chromosomes 3, 6, and 12 only. qRT-PCR analysis showed that the expression of GWHGBEIJ010320.1 was significantly up-regulated under low temperature stress, a significant response to low temperature stress. This study lays a foundation for further research on the role of the Trihelix transcription factor of ginseng in abiotic stress, as well as the growth and development of ginseng.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Panax , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Panax/genetics , Panax/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Promoter Regions, Genetic , Gene Expression Profiling
19.
Article in English | MEDLINE | ID: mdl-39096758

ABSTRACT

Spider venom is a natural source of diverse biomolecules, but due to technical limitations, only a small fraction has been studied. With the advancement of omics technologies, research on spider venom has broadened, greatly promoting systematic studies of spider venom. Agelena limbata is a common spider found in vegetation, known for constructing funnel-shaped webs, and feeding on insects such as Diptera and Homoptera. However, due to its small size and the difficulty in obtaining venom, the composition of Agelena limbata venom has never been studied. In this study, a transcriptomics approach was used to analyze the toxin components in the venom of Agelena limbata, resulting in the identification of 28 novel toxin-like sequences and 24 peptidases. Based on sequence similarity and differences in cysteine motifs, the 28-novel toxin-like sequences were classified into 10 superfamilies. According to the results annotated in the database, the 24 peptidases were divided into six distinct families, with the serine protease family being the most common. A phylogenetic tree was constructed using the toxin-like sequences of Agelena limbata along with Psechrus triangulus and Hippasa lycosina. An analysis of the structural domains and motifs of Agelena limbata was also conducted. The results indicated that Agelena limbata is more distantly related to the other two species of funnel-web spiders, and that the toxin superfamily IX has a unique function compared to the other superfamilies. This study reveals the components of the Agelena limbata venom, deepening our understanding of it, and through bioinformatics analysis, has identified unique functions of the toxin superfamilies, providing a scientific basis for the development of bioactive drugs in the future.

SELECTION OF CITATIONS
SEARCH DETAIL