Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 44(10): 5861-5869, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827801

ABSTRACT

Currently, micro- and nanoplastics are the most concerning pollutants, which have been confirmed to exist in every stage of drinking water treatment process. Micro- and nanoplastics in drinking water have large specific surface areas, which could adsorb inorganic matter, organic matter, and microorganisms, thereby increasing their risk to human health. The adsorption and agglomeration behavior of micro- and nanoplastics on typical pollutants is called the "colloid pump effect." Focused on the micro- and nanoplastics in drinking water, the occurrence, colloid pump effect, and toxic effect on the human body and the effect of colloid pumps on the removal of micro- and nanoplastics were summarized and described. The results revealed that micro- and nanoplastics existed widely in source water, treated water, pipe network water, and tap water. The colloid pump effect of micro- and nanoplastics promoted their agglomeration with inorganic matter, organic matter, and microorganisms, which not only intensified the toxic effect of micro- and nanoplastics but also affected the removal effect. There were different viewpoints on the effect of coagulation and sedimentation on the removal of micro- and nanoplastics, and the removal effect of sand filters was limited. The advanced treatment was an efficient process to remove micro- and nanoplastics with a particle size smaller than 5 µm. The removal rate of micro- and nanoplastics could be effectively improved by exploring the mechanism of the colloid pump effect and its initiation conditions. Finally, from the perspective of the drinking water treatment process and colloid pump effect, the control of micro- and nanoplastics in drinking water was prospected in order to provide reference for reducing the occurrence and toxicity of micro- and nanoplastics in drinking water, ensuring drinking water quality safety and human health.


Subject(s)
Drinking Water , Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Humans , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Plastics
2.
Huan Jing Ke Xue ; 44(3): 1244-1257, 2023 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-36922186

ABSTRACT

As an emerging pollutant of global concern, microplastics (plastics with size<5 mm) and heavy metals are widely found in freshwater environments. Microplastics migrate easily, are difficult to degrade, and have large specific surface areas. They can enrich a variety of pollutants such as heavy metals and greatly increase their potential harm to the environment and ecology. Firstly, the special environmental behavior of microplastics carrying heavy metals and migrating together in freshwater environments was defined as the "Trojan-horse effect." Then, the Trojan-horse effect and its mechanism of microplastics and heavy metals in the freshwater environment were summarized and expounded from four aspects:the source and distribution of microplastics in the freshwater environment, the enrichment effect of microplastics on heavy metals, the impact of microplastics and the heavy metal Trojan-horse effect on its migration behavior, and the biological impact of microplastics and the heavy metal Trojan-horse effect. The results showed that, as a wide range of non-point source pollutants, microplastics widely existed in freshwater environments. In freshwater environments, the adsorption degree of single metals was different in different environments. It was mainly affected by microplastics, metals, and environmental factors. There was competitive adsorption in the presence of multiple metal ions. The Trojan-horse effect of microplastics and heavy metals could also affect their co-transport behavior. The Trojan-horse effect of microplastics and heavy metals in the freshwater environment frequently exacerbated their toxicity to aquatic organisms. This study provides references for comprehensively understanding the Trojan-horse effect and its mechanism in microplastics and heavy metals in the freshwater environment, which could effectively reduce the ecological risk and impact on human health of microplastics and heavy metals in the freshwater environment.


Subject(s)
Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Fresh Water
3.
Preprint in English | medRxiv | ID: ppmedrxiv-20040691

ABSTRACT

BackgroundSARS-CoV-2 is a novel human coronavirus, there is no specific antiviral drugs. It has been proved that host-cell-expressed CD147 could bind spike protein of SARS-CoV-2 and involve in host cell invasion. Antibody against CD147 could block the infection of SARS-CoV-2. We aimed to assess the efficacy and safety of meplazumab, a humanized anti-CD147 antibody, as add-on therapy in patients with COVID-19 pneumonia. MethodsAll patients received recommended strategy from Diagnosis and Treatment for 2019 Novel Coronavirus Diseases released by National Health Commission of China. Eligible patients were add-on administered 10 mg meplazumab intravenously at days 1, 2, and 5. Patients hospitalized in the same period were observed as concurrent control. The endpoints include virological clearance rate, case severity, chest radiographic, and laboratory test. This trial was approved by the Ethics Committee of Institution at the Tangdu hospital, and registered with ClinicalTrials.gov, NCT 04275245. Findings17 patients were enrolled and assigned to meplazumab group between Feb 3, 2020 and Feb 10, 2020. 11 hospitalized patients served as concurrent control. Baseline characteristics were generally balanced across two groups. Compared to control group, meplazumab treatment significantly improved the discharged (p=0.006) and case severity (p=0.021) in critical and severe patients. The time to virus negative in meplazumab group was reduced than that in control group (median 3, 95%CI[1.5-4.5] vs. 13, [6.5-19.5]; p=0.014, HR=0.37, 95%CI[0.155-0.833]). The percentages of patients recovered to the normal lymphocyte count and CRP concentration were also increased remarkably and rapidly in meplazumab group. No adverse effect was found in meplazumab-treated patients. InterpretationMeplazumab efficiently improved the recovery of patients with SARS-CoV-2 pneumonia with a favorable safety profile. Our results support to carry out a large-scale investigation of meplazumab as a treatment for COVID-19 pneumonia. FundingNational Science and Technology Major Project.

SELECTION OF CITATIONS
SEARCH DETAIL
...