Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Parkinsons Dis ; 9(1): 121, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37567894

ABSTRACT

Individuals with Parkinson's disease (PD) typically receive a diagnosis once they have developed motor symptoms, at which point there is already significant loss of substantia nigra dopamine neurons, α-synuclein accumulation in surviving neurons, and neuroinflammation. Consequently, the point of clinical presentation may be too late to initiate disease-modifying therapy. In contrast to this clinical reality, animal models often involve acute neurodegeneration and potential therapies are tested concurrently or shortly after the pathogenic insult has begun rather than later when diagnostic clinical symptoms emerge. Therefore, we sought to develop a model that reflects the clinical situation more accurately. Middle-aged rats (7-9 months-old) received a single daily intraperitoneal injection of rotenone for 5 consecutive days and were observed over the next 8-9 months. Rotenone-treated rats showed transient motor slowing and postural instability during exposure but recovered within 9 days of rotenone cessation. Rats remained without behavioral deficits for 3-4 months, then developed progressive motor abnormalities over the ensuing months. As motor abnormalities began to emerge 3 months after rotenone exposure, there was significant loss of nigral dopaminergic neurons and significant microglial activation. There was delayed accumulation of α-synuclein in neurons of the substantia nigra and frontal cortex, which was maximal at 9 months post-rotenone. In summary, a brief temporally-remote exposure to rotenone causes delayed and progressive behavioral and neuropathological changes similar to Parkinson's disease. This model mimics the human clinical situation, in which pathogenesis is well-established by the time diagnostic motor deficits appear. As such, this model may provide a more relevant experimental system in which to test disease-modifying therapeutics.

2.
Neurobiol Dis ; 170: 105754, 2022 08.
Article in English | MEDLINE | ID: mdl-35577065

ABSTRACT

Mitochondrial dysfunction and oxidative stress are strongly implicated in Parkinson's disease (PD) pathogenesis and there is evidence that mitochondrially-generated superoxide can activate NADPH oxidase 2 (NOX2). Although NOX2 has been examined in the context of PD, most attention has focused on glial NOX2, and the role of neuronal NOX2 in PD remains to be defined. Additionally, pharmacological NOX2 inhibitors have typically lacked specificity. Here we devised and validated a proximity ligation assay for NOX2 activity and demonstrated that in human PD and two animal models thereof, both neuronal and microglial NOX2 are highly active in substantia nigra under chronic conditions. However, in acute and sub-acute PD models, we observed neuronal, but not microglial NOX2 activation, suggesting that neuronal NOX2 may play a primary role in the early stages of the disease. Aberrant NOX2 activity is responsible for the formation of oxidative stress-related post-translational modifications of α-synuclein, and impaired mitochondrial protein import in vitro in primary ventral midbrain neuronal cultures and in vivo in nigrostriatal neurons in rats. In a rat model, administration of a brain-penetrant, highly specific NOX2 inhibitor prevented NOX2 activation in nigrostriatal neurons and its downstream effects in vivo, such as activation of leucine-rich repeat kinase 2 (LRRK2). We conclude that NOX2 is an important enzyme that contributes to progressive oxidative damage which in turn can lead to α-synuclein accumulation, mitochondrial protein import impairment, and LRRK2 activation. In this context, NOX2 inhibitors hold potential as a disease-modifying therapy in PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Dopaminergic Neurons/metabolism , Mitochondrial Proteins/metabolism , NADPH Oxidase 2/metabolism , Parkinson Disease/metabolism , Rats , alpha-Synuclein/metabolism
3.
Redox Biol ; 37: 101695, 2020 10.
Article in English | MEDLINE | ID: mdl-32905883

ABSTRACT

Convergent evidence implicates impaired mitochondrial function and α-Synuclein accumulation as critical upstream events in the pathogenesis of Parkinson's disease, but comparatively little is known about how these factors interact to provoke neurodegeneration. We previously showed that α-Synuclein knockdown protected rat substantia nigra dopaminergic neurons from systemic exposure to the mitochondrial complex I inhibitor rotenone. Here we show that motor abnormalities prior to neuronal loss in this model are associated with extensive α-Synuclein-dependent cellular thiol oxidation. In order to elucidate the underlying events in vivo we constructed novel transgenic zebrafish that co-express, in dopaminergic neurons: (i) human α-Synuclein at levels insufficient to provoke neurodegeneration or neurobehavioral abnormalities; and (ii) genetically-encoded ratiometric fluorescent biosensors to detect cytoplasmic peroxide flux and glutathione oxidation. Live intravital imaging of the intact zebrafish CNS at cellular resolution showed unequivocally that α-Synuclein amplified dynamic cytoplasmic peroxide flux in dopaminergic neurons following exposure to the mitochondrial complex I inhibitors MPP+ or rotenone. This effect was robust and clearly evident following either acute or prolonged exposure to each inhibitor. In addition, disturbance of the resting glutathione redox potential following exogenous hydrogen peroxide challenge was augmented by α-Synuclein. Together these data show that α-Synuclein is a critical determinant of the redox consequences of mitochondrial dysfunction in dopaminergic neurons. The findings are important because the mechanisms underlying α-Synuclein-dependent reactive oxygen species fluxes and antioxidant suppression might provide a pharmacological target in Parkinson's disease to prevent progression from mitochondrial dysfunction and oxidative stress to cell death.


Subject(s)
Dopaminergic Neurons , alpha-Synuclein , Animals , Dopaminergic Neurons/metabolism , Mitochondria/metabolism , Oxidative Stress , Peroxides/metabolism , Rats , Zebrafish/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
4.
Neurobiol Dis ; 125: 146-153, 2019 05.
Article in English | MEDLINE | ID: mdl-30658149

ABSTRACT

α-Synuclein plays a central role in the pathogenesis of Parkinson's disease (PD); interventions that decrease its expression appear neuroprotective in PD models. Successful translation of these observations into effective therapies will be dependent on the safety of suppressing α-synuclein expression in the adult brain. We investigated long-term α-synuclein knockdown in the adult rat CNS. 8-month old animals received either AAV-sh[Snca] (an RNA interference vector targeting the Snca mRNA transcript) or AAV-sh[Ctrl] (a control vector) unilaterally into the substantia nigra. No signs of systemic toxicity or motor dysfunction were observed in either experimental group over 12 months. Viral transgene expression persisted to 12 months post-inoculation, at which point Snca mRNA expression in substantia nigra dopaminergic neurons of animals that received AAV-sh[Snca] was decreased by ≈90%, and α-synuclein immunoreactivity by >70% relative to the control side. Stereological quantification of Nissl-labeled neurons showed no evidence of neurodegeneration in the substantia nigra 12 months after inoculation with either vector, and we observed abundant dopaminergic neurons with minimal α-synuclein immunoreactivity that appeared otherwise unremarkable in the AAV-sh[Snca] group. Despite the absence of neurodegeneration, some loss of TH expression was evident in nigral neurons after transduction with either vector, presumably a non-specific consequence of vector delivery, cellular transduction, or expression of shRNA or GFP. We conclude that long-term α-synuclein knockdown in the substantia nigra does not cause significant functional deficits in the ascending dopaminergic projection, or neurodegeneration. These findings are encouraging that it may be feasible to target α-synuclein expression therapeutically in PD.


Subject(s)
Nerve Degeneration/etiology , RNAi Therapeutics/methods , Substantia Nigra/pathology , alpha-Synuclein/antagonists & inhibitors , Animals , Dependovirus , Gene Knockdown Techniques , Genetic Vectors , Male , RNA Interference , RNA, Small Interfering , Rats , Rats, Inbred Lew , alpha-Synuclein/genetics
5.
Brain Res Bull ; 143: 27-35, 2018 10.
Article in English | MEDLINE | ID: mdl-30278200

ABSTRACT

Depression is associated with uncontrolled diabetes, which indicates a lack of insulin effect, yet the role of the insulin receptor in mediating depression is not clearly established because insulin receptors are not required for glucose entry into the brain. However, insulin receptors are important for brain function since insulin receptor knockout mice have depressive-like activity. Depression and cognitive problems are also associated with low insulin-like growth factor-1 (IGF-1) in the elderly. Rodent studies showed chronic IGF-1 administration had antidepressant-like (AD) activity. We asked if insulin in the brain might act through the IGF-1 receptor, as it does in some tissues. We used acute insulin or IGF-1 infusions into the 3rd ventricle (icv) in rats and tested animals in a forced swim test. We found that antidepressive-like behavior is mediated by insulin and IGF-1. Further, administration of the IGF-1 receptor antagonist JB-1 blocked the antidepressive-like activity of the insulin and IGF-1, indicating a strong relationship between insulin, IGF-1 and depression. Insulin acts at least partially through the IGF-1 receptor and is responsive to receptor antagonism. The model offers promise for future studies of the mechanism of depression, and therapy to increase insulin sensitivity and IGF-1 action including exercise and nutrition.


Subject(s)
Insulin-Like Growth Factor I/pharmacology , Insulin/pharmacology , Receptor, IGF Type 1/drug effects , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Depression/etiology , Depressive Disorder/etiology , Fluoxetine/metabolism , Fluoxetine/pharmacology , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Motor Activity/drug effects , Oligopeptides/metabolism , Oligopeptides/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/pharmacology , Receptor, Insulin/drug effects , Receptor, Insulin/metabolism , Swimming/psychology
6.
Sci Transl Med ; 10(451)2018 07 25.
Article in English | MEDLINE | ID: mdl-30045977

ABSTRACT

Missense mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD). However, a potential role of wild-type LRRK2 in idiopathic PD (iPD) remains unclear. Here, we developed proximity ligation assays to assess Ser1292 phosphorylation of LRRK2 and, separately, the dissociation of 14-3-3 proteins from LRRK2. Using these proximity ligation assays, we show that wild-type LRRK2 kinase activity was selectively enhanced in substantia nigra dopamine neurons in postmortem brain tissue from patients with iPD and in two different rat models of the disease. We show that this occurred through an oxidative mechanism, resulting in phosphorylation of the LRRK2 substrate Rab10 and other downstream consequences including abnormalities in mitochondrial protein import and lysosomal function. Our study suggests that, independent of mutations, wild-type LRRK2 plays a role in iPD. LRRK2 kinase inhibitors may therefore be useful for treating patients with iPD who do not carry LRRK2 mutations.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Protein Binding , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
7.
Sci Transl Med ; 8(342): 342ra78, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27280685

ABSTRACT

α-Synuclein accumulation and mitochondrial dysfunction have both been strongly implicated in the pathogenesis of Parkinson's disease (PD), and the two appear to be related. Mitochondrial dysfunction leads to accumulation and oligomerization of α-synuclein, and increased levels of α-synuclein cause mitochondrial impairment, but the basis for this bidirectional interaction remains obscure. We now report that certain posttranslationally modified species of α-synuclein bind with high affinity to the TOM20 (translocase of the outer membrane 20) presequence receptor of the mitochondrial protein import machinery. This binding prevented the interaction of TOM20 with its co-receptor, TOM22, and impaired mitochondrial protein import. Consequently, there were deficient mitochondrial respiration, enhanced production of reactive oxygen species, and loss of mitochondrial membrane potential. Examination of postmortem brain tissue from PD patients revealed an aberrant α-synuclein-TOM20 interaction in nigrostriatal dopaminergic neurons that was associated with loss of imported mitochondrial proteins, thereby confirming this pathogenic process in the human disease. Modest knockdown of endogenous α-synuclein was sufficient to maintain mitochondrial protein import in an in vivo model of PD. Furthermore, in in vitro systems, overexpression of TOM20 or a mitochondrial targeting signal peptide had beneficial effects and preserved mitochondrial protein import. This study characterizes a pathogenic mechanism in PD, identifies toxic species of wild-type α-synuclein, and reveals potential new therapeutic strategies for neuroprotection.


Subject(s)
Mitochondrial Proteins/metabolism , Parkinson Disease/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , alpha-Synuclein/metabolism , Animals , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Parkinson Disease/genetics , Protein Binding , Protein Transport/genetics , Protein Transport/physiology , Rats , Rats, Mutant Strains , Receptors, Cell Surface , Receptors, Cytoplasmic and Nuclear/genetics , alpha-Synuclein/genetics
8.
J Clin Invest ; 125(7): 2721-35, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26075822

ABSTRACT

Multiple convergent lines of evidence implicate both α-synuclein (encoded by SCNA) and mitochondrial dysfunction in the pathogenesis of sporadic Parkinson's disease (PD). Occupational exposure to the mitochondrial complex I inhibitor rotenone increases PD risk; rotenone-exposed rats show systemic mitochondrial defects but develop specific neuropathology, including α-synuclein aggregation and degeneration of substantia nigra dopaminergic neurons. Here, we inhibited expression of endogenous α-synuclein in the adult rat substantia nigra by adeno-associated virus-mediated delivery of a short hairpin RNA (shRNA) targeting the endogenous rat Snca transcript. Knockdown of α-synuclein by ~35% did not affect motor function or cause degeneration of nigral dopaminergic neurons in control rats. However, in rotenone-exposed rats, progressive motor deficits were substantially attenuated contralateral to α-synuclein knockdown. Correspondingly, rotenone-induced degeneration of nigral dopaminergic neurons, their dendrites, and their striatal terminals was decreased ipsilateral to α-synuclein knockdown. These data show that α-synuclein knockdown is neuroprotective in the rotenone model of PD and indicate that endogenous α-synuclein contributes to the specific vulnerability of dopaminergic neurons to systemic mitochondrial inhibition. Our findings are consistent with a model in which genetic variants influencing α-synuclein expression modulate cellular susceptibility to environmental exposures in PD patients. shRNA targeting the SNCA transcript should be further evaluated as a possible neuroprotective therapy in PD.


Subject(s)
Nerve Degeneration/prevention & control , Parkinsonian Disorders/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/genetics , Animals , Disease Models, Animal , Dopaminergic Neurons/pathology , Dopaminergic Neurons/physiology , Gene Knockdown Techniques , Male , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred Lew , Rats, Transgenic , Rotenone/toxicity , Substantia Nigra/pathology , Substantia Nigra/physiopathology , alpha-Synuclein/physiology
9.
PLoS One ; 7(11): e49121, 2012.
Article in English | MEDLINE | ID: mdl-23145091

ABSTRACT

Roux-en-Y gastric bypass (RYGB) is one of the most successful treatments for severe obesity and associated comorbidities. One potential adverse outcome, however, is increased risk for alcohol use. As such, we tested whether RYGB alters motivation to self-administer alcohol in outbred dietary obese rats, and investigated the involvement of the ghrelin system as a potential underlying mechanism. High fat (60%kcal from fat) diet-induced obese, non-diabetic male Sprague Dawley rats underwent RYGB (n = 9) or sham operation (Sham, n = 9) and were tested 4 months after surgery on a progressive ratio-10 (PR10) schedule of reinforcement operant task for 2, 4, and 8% ethanol. In addition, the effects of the ghrelin-1a-receptor antagonist D-[Lys3]-GHRP-6 (50, 100 nmol/kg, IP) were tested on PR10 responding for 4% ethanol. Compared to Sham, RYGB rats made significantly more active spout responses to earn reward, more consummatory licks on the ethanol spout, and achieved higher breakpoints. Pretreatment with a single peripheral injection of D-[Lys3]-GHRP-6 at either dose was ineffective in altering appetitive or consummatory responses to 4% ethanol in the Sham group. In contrast, RYGB rats demonstrated reduced operant performance to earn alcohol reward on the test day and reduced consummatory responses for two subsequent days following the drug. Sensitivity to threshold doses of D-[LYS3]-GHRP-6 suggests that an augmented ghrelin system may contribute to increased alcohol reward in RYGB. Further research is warranted to confirm applicability of these findings to humans and to explore ghrelin-receptor targets for treatment of alcohol-related disorders in RYGB patients.


Subject(s)
Alcohol-Related Disorders/etiology , Gastric Bypass/adverse effects , Ghrelin/metabolism , Obesity/surgery , Alcohol-Related Disorders/metabolism , Alcohol-Related Disorders/physiopathology , Animals , Energy Intake/drug effects , Ethanol/administration & dosage , Humans , Male , Obesity/metabolism , Obesity/physiopathology , Rats , Rats, Sprague-Dawley , Receptors, Ghrelin/antagonists & inhibitors , Receptors, Ghrelin/metabolism , Reward , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...