Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37999279

ABSTRACT

The effect of the aluminum layer on the kinetics and mechanism of aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) in (Al/a-Si)n multilayered films was studied using a complex of in situ methods (simultaneous thermal analysis, transmission electron microscopy, electron diffraction, and four-point probe resistance measurement) and ex situ methods (X-ray diffraction and optical microscopy). An increase in the thickness of the aluminum layer from 10 to 80 nm was found to result in a decrease in the value of the apparent activation energy Ea of silicon crystallization from 137 to 117 kJ/mol (as estimated by the Kissinger method) as well as an increase in the crystallization heat from 12.3 to 16.0 kJ/(mol Si). The detailed kinetic analysis showed that the change in the thickness of an individual Al layer could lead to a qualitative change in the mechanism of aluminum-induced silicon crystallization: with the thickness of Al ≤ 20 nm. The process followed two parallel routes described by the n-th order reaction equation with autocatalysis (Cn-X) and the Avrami-Erofeev equation (An): with an increase in the thickness of Al ≥ 40 nm, the process occurred in two consecutive steps. The first one can be described by the n-th order reaction equation with autocatalysis (Cn-X), and the second one can be described by the n-th order reaction equation (Fn). The change in the mechanism of amorphous silicon crystallization was assumed to be due to the influence of the degree of Al defects at the initial state on the kinetics of the crystallization process.

2.
Materials (Basel) ; 15(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36499953

ABSTRACT

The kinetics of the solid-state reaction between nanolayers of polycrystalline copper and amorphous silicon (a-Si) has been studied in a Cu/a-Si thin-film system by the methods of electron diffraction and simultaneous thermal analysis (STA), including the methods of differential scanning calorimetry (DSC) and thermogravimetry (TG). It has been established that, in the solid-state reaction, two phases are formed in a sequence: Cu + Si → η″-Cu3Si → γ-Cu5Si. It has been shown that the estimated values of the kinetic parameters of the formation processes for the phases η″-Cu3Si and γ-Cu5Si, obtained using electron diffraction, are in good agreement with those obtained by DSC. The formation enthalpy of the phases η″-Cu3Si and γ-Cu5Si has been estimated to be: ΔHη″-Cu3Si = -12.4 ± 0.2 kJ/mol; ΔHγ-Cu5Si = -8.4 ± 0.4 kJ/mol. As a result of the model description of the thermo-analytical data, it has been found that the process of solid-state transformations in the Cu/a-Si thin-film system under study is best described by a four-stage kinetic model R3 → R3 → (Cn-X) → (Cn-X). The kinetic parameters of formation of the η″-Cu3Si phase are the following: Ea = 199.9 kJ/mol, log(A, s-1) = 20.5, n = 1.7; and for the γ-Cu5Si phase: Ea = 149.7 kJ/mol, log(A, s-1) = 10.4, n = 1.3, with the kinetic parameters of formation of the γ-Cu5Si phase being determined for the first time.

3.
Biosensors (Basel) ; 12(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35884279

ABSTRACT

This work is aimed at the development of new heterostructures based on cobalt phthalocyanines (CoPc) and gold nanoparticles (AuNPs), and the evaluation of the prospects of their use to determine low concentrations of ammonia and nitric oxide. For this purpose, CoPc films were decorated with AuNPs by gas-phase methods (MOCVD and PVD) and drop-casting (DC), and their chemiresistive sensor response to low concentrations of NO (10-50 ppb) and NH3 (1-10 ppm) was investigated. A comparative analysis of the characteristics of heterostructures depending on the preparation methods was carried out. The composition, structure, and morphology of the resulting hybrid films were studied by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission (ICP-AES) spectroscopy, as well as electron microscopy methods to discuss the effect of these parameters on the sensor response of hybrid films to ammonia and nitric oxide. It was shown that regardless of the fabrication method, the response of Au/CoPc heterostructures to NH3 and NO gases increased with an increase in the concentration of gold. The sensor response of Au/CoPc heterostructures to NH3 increased 2-3.3 times compared to CoPc film, whereas in the case of NO it increased up to 16 times. The detection limits of the Au/CoPc heterostructure with a gold content of ca. 2.1 µg/cm2 for NH3 and NO were 0.1 ppm and 4 ppb, respectively. It was shown that Au/CoPc heterostructures can be used for the detection of NH3 in a gas mixture simulating exhaled air (N2-74%, O2-16%, H2O-6%, CO2-4%).


Subject(s)
Gold , Metal Nanoparticles , Ammonia/analysis , Gases/analysis , Gold/chemistry , Indoles , Metal Nanoparticles/chemistry , Nitric Oxide , Organometallic Compounds
4.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35159723

ABSTRACT

This work is devoted to the study of magnetic Fe3O4 nanoparticles doubly coated with carbon. First, Fe3O4@C nanoparticles were synthesized by thermal decomposition. Then these synthesized nanoparticles, 20-30 nm in size were processed in a solution of glucose at 200 °C during 12 h, which led to an unexpected phenomenon-the nanoparticles self-assembled into large conglomerates of a regular shape of about 300 nm in size. The morphology and features of the magnetic properties of the obtained hybrid nanoparticles were characterized by transmission electron microscopy, differential thermo-gravimetric analysis, vibrating sample magnetometer, magnetic circular dichroism and Mössbauer spectroscopy. It was shown that the magnetic core of Fe3O4@C nanoparticles was nano-crystalline, corresponding to the Fe3O4 phase. The Fe3O4@C@C nanoparticles presumably contain Fe3O4 phase (80%) with admixture of maghemite (20%), the thickness of the carbon shell in the first case was of about 2-4 nm. The formation of very large nanoparticle conglomerates with a linear size up to 300 nm and of the same regular shape is a remarkable peculiarity of the Fe3O4@C@C nanoparticles. Adsorption of organic dyes from water by the studied nanoparticles was also studied. The best candidates for the removal of dyes were Fe3O4@C@C nanoparticles. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for cationic dye methylene blue (MB) and anionic dye Congo red (CR). The equilibrium data were more consistent with the Langmuir isotherm and were perfectly described by the Langmuir-Freundlich model.

5.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34578686

ABSTRACT

Fe3O4@SiO2 core-shell nanoparticles (NPs) were synthesized with the co-precipitation method and functionalized with NH2 amino-groups. The nanoparticles were characterized by X-ray, FT-IR spectroscopy, transmission electron microscopy, selected area electron diffraction, and vibrating sample magnetometry. The magnetic core of all the nanoparticles was shown to be nanocrystalline with the crystal parameters corresponding only to the Fe3O4 phase covered with a homogeneous amorphous silica (SiO2) shell of about 6 nm in thickness. The FT-IR spectra confirmed the appearance of chemical bonds at amino functionalization. The magnetic measurements revealed unusually high saturation magnetization of the initial Fe3O4 nanoparticles, which was presumably associated with the deviations in the Fe ion distribution between the tetrahedral and octahedral positions in the nanocrystals as compared to the bulk stoichiometric magnetite. The fluorescent spectrum of eosin Y-doped NPs dispersed in water solution was obtained and a red shift and line broadening (in comparison with the dye molecules being free in water) were revealed and explained. Most attention was paid to the adsorption properties of the nanoparticles with respect to three dyes: methylene blue, Congo red, and eosin Y. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for all three dyes. The equilibrium data were more compatible with the Langmuir isotherm and the maximum adsorption capacity was reached for Congo red.

6.
ACS Omega ; 6(11): 7533-7543, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778265

ABSTRACT

Valleriite is of interest as a mineral source of basic and precious metals and as an unusual material composed of two-dimensional (2D) Fe-Cu sulfide and magnesium hydroxide layers, whose characteristics are still very poorly understood. Here, the mineral samples of two types with about 50% of valleriites from Noril'sk ore provenance, Russia, were examined using Cu K- and Fe K-edge X-ray absorption fine structure (XAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), 57Fe Mössbauer spectroscopy, and magnetic measurements. The Cu K X-ray absorption near-edge structures (XANES) spectra resemble those of chalcopyrite, however, with a higher electron density at Cu+ centers and essentially differ from those of bornite Cu5FeS4; the Fe K-edge was less informative because of accompanying oxidized Fe-containing phases. The post-edge XANES and extended XAFS (EXAFS) analysis reveal differences in the bond lengths, e.g., additional metal-metal distances in valleriites as compared with chalcopyrite. The XPS spectra confirmed the Cu+ and Fe3+ state in the sulfide sheets and suggest that they are in electron equilibrium with (Mg, Al) hydroxide layers. Mössbauer spectra measured at room temperature comprise central doublets of paramagnetic Fe3+, which decreased at 78 K and almost disappeared at 4.2 K, producing a series of hyperfine Zeeman sextets due to internal magnetic fields arising in valleriites. Magnetic measurements do not reveal antiferromagnetic transitions known for bornite. The specific structure and properties of valleriite are discussed in particular as a platform for composites of the 2D transition metal sulfide and hydroxide (mono)layers stacked by the electrical charges, promising for a variety of applications.

7.
Molecules ; 25(18)2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32962303

ABSTRACT

We have studied, both experimentally and theoretically, the unusual temperature dependence of the phonon spectra in NdCoO3, SmCoO3 and GdCoO3, where the Co3+ ion is in the low-spin (LS) ground state, and at the finite temperature, the high-spin (HS) term has a nonzero concentration nHS due to multiplicity fluctuations. We measured the absorption spectra in polycrystalline and nanostructured samples in the temperature range 3-550 K and found a quite strong breathing mode softening that cannot be explained by standard lattice anharmonicity. We showed that the anharmonicity in the electron-phonon interaction is responsible for this red shift proportional to the nHS concentration.


Subject(s)
Metals, Rare Earth/chemistry , Minerals/chemistry , Nanostructures/chemistry , Crystallization , Electrons , Models, Molecular , Molecular Conformation , Phonons , Quantum Theory , Temperature
8.
RSC Adv ; 10(56): 34137-34148, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519069

ABSTRACT

A series of CuO x -TiO2 photocatalysts were prepared using fresh and thermally activated Evonik Aeroxide P25 titanium dioxide. The photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, XANES, diffuse reflectance spectroscopy, and N2 adsorption technique. Photocatalytic activity of the samples was tested in hydrogen production from aqueous-alcoholic solutions of methylene blue under UV radiation (λ = 386 nm). It was found for the first time the synergistic effect of hydrogen production from two substrates-dye and ethanol. The maximum hydrogen production rate in the system water-ethanol-methylene blue was 1 µmol min-1, which is 25 times higher than a value measured in a 10% solution of ethanol in water. The thermal activation of titania also leads to a change in the rate of hydrogen production. The highest catalytic activity was observed for a CuO x -TiO2 photocatalyst based on titania thermally-activated at 600 °C in air. A mechanism of the photocatalytic reaction is discussed.

9.
ACS Omega ; 4(7): 11472-11480, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460252

ABSTRACT

Although nanoparticles of heavy metal xanthates and their hydrosols can play important roles in froth flotation, environmental issues, analytics, and manufacturing of metal sulfide nanocomposites, they have received little attention. We studied colloidal solutions and immobilized particles prepared via interaction of aqueous lead nitrate with alkyl xanthates applying UV-vis absorption spectroscopy, dynamic light scattering, zeta potential measurement, thermogravimetry analysis, Fourier transform infrared spectroscopy, Raman scattering, X-ray photoelectron spectroscopy, atomic force microscopy, and transmission electron microscopy. The hydrodynamic diameter of colloidal particles of Pb(SSCOR)2 decreased from 500 to 50 nm with an increase in the alkyl radical length and the initial xanthate to lead ratio (X/Pb); the zeta potential magnitude varied similarly, although it remained negative. The effect of pH in the range of 4.5-11 was minor, but the colloids produced using excess of Pb2+ in alkaline media were close to PbX and decomposed much easier than PbX2. The uptake of lead xanthates on supports was generally low because of negative charges of the colloids; however, 50-100 nm thick PbX2 films were deposited on PbS and SiO2 from the media of X/Pb < 2 and pH < 9 because of preadsorption of Pb2+, while nanorods formed on highly oriented pyrolytic graphite.

10.
J Microbiol Methods ; 159: 42-50, 2019 04.
Article in English | MEDLINE | ID: mdl-30797021

ABSTRACT

The present study describes the synthesis of silver and zinc oxide nanobactericides from the phytogenic source Bupleurum aureum. The synthesized nanobactericides were characterized and evaluated for bio-functionalization onto bacterial cellulose membrane which was synthesized by Komagataeibacterxylinus B-12068 culture strain. The synthesis of nanobacterides were initially confirmed using UV-Visible spectroscopy which indicated localized surface resonance (LSPR) peaks at 415 nm for silver nanobactericides and 280 nm for zinc nanobactericides. The nature of the capping agent for synthesized nanobactericides was predicted using FTIR which confirmed the presence of functional moieties. XRD analysis revealed their crystalline nature while morphological characteristics were studied using TEM which confirmed the polydispersity of nanobactericides with the average size in the range of 20-25 nm. The nanobactericides were tested for their antimicrobial activity against seven multi-drug resistant pathogens which were clinically isolated from patients suffering from a myriad of microbial infections. The tested pathogens had antimicrobial resistance to ten different antibiotics and have been reported to be the major cause of nosocomial infections. The nanobactericides displayed significant activity against the test pathogens. Silver nanobactericides showed the highest activity against Escherichia coli strain 55 with a 24 mm zone of inhibition while zinc oxide nanobactericides displayed the highest activity against methicillin-resistant Staphylococcus aureus (MRSA) with a 20 mm inhibition zone. The bio- functionalized cellulose films (BCF) were characterized using SEM along with physicochemical analysis. The BCF's were evaluated for antibacterial activity against test pathogens which resulted in marked antimicrobial potential against multi-drug resistant bacteria and therefore has the potential to be utilized as an efficient alternative to counter drug resistant pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bupleurum/metabolism , Metal Nanoparticles/toxicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Silver/pharmacology , Zinc Oxide/pharmacology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Escherichia coli/growth & development , Metal Nanoparticles/chemistry , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Particle Size , Silver/chemistry , Silver/metabolism , Zinc Oxide/chemistry , Zinc Oxide/metabolism
11.
Langmuir ; 27(18): 11697-703, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21846095

ABSTRACT

The reduction of chlorocomplexes of gold(III) from muriatic solutions by nanocrystal powders of palladium and platinum at 110 and 130 °C under hydrothermal conditions and the action of microwave irradiation has been investigated. The structure and composition of the solid phase have been characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and chemical methods. Bimetallic particles with a core-shell structure have been revealed. The obtained particles are established to have a core of the metal reductant covered with a substitutional solid (Au, Pd) solution in case of palladium, and isolated by a gold layer in the case of platinum. The main reason for such a difference is the ratio between the rates of aggregation and reduction. It has been shown by the example of the Au-Pd system that the use of microwave irradiation allows us not only to accelerate the synthesis of particles but also to obtain more homogeneous materials in comparison with conventional heating.

SELECTION OF CITATIONS
SEARCH DETAIL
...