Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 13(2)2022 May 18.
Article in English | MEDLINE | ID: mdl-35645270

ABSTRACT

The combination of titania nanofilms and silver nanoparticles (NPs) is a very promising material, with antibacterial and osseointegration-induced properties for titanium implant coatings. In this work, we successfully prepared TiO2 nanolayer/Ag NP structures on titanium disks using atomic layer deposition (ALD). The samples were studied by scanning electron microscopy (SEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), contact angle measurements, and SEM-EDS. Antibacterial activity was tested against Staphylococcus aureus. The in vitro cytological response of MG-63 osteosarcoma and human fetal mesenchymal stem cells (FetMSCs) was examined using SEM study of their morphology, MTT test of viability and differentiation using alkaline phosphatase and osteopontin with and without medium-induced differentiation in the osteogenic direction. The samples with TiO2 nanolayers, Ag NPs, and a TiO2/Ag combination showed high antibacterial activity, differentiation in the osteogenic direction, and non-cytotoxicity. The medium for differentiation significantly improved osteogenic differentiation, but the ALD coatings also stimulated differentiation in the absence of the medium. The TiO2/Ag samples showed the best antibacterial ability and differentiation in the osteogenic direction, indicating the success of the combining of TiO2 and Ag to produce a multifunctional biocompatible and bactericidal material.

2.
Nanoscale Res Lett ; 7(1): 421, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22839661

ABSTRACT

Relationship between the rate of electrochemical formation of mesoporous Si and the crystallographic directions has been studied by local anodization of wafers through a mask having the form of narrow long wedges radiating from the center in all directions ('wagon-wheel' mask). The etching rates were found from the side etching under the thin transparent n-Si mask. On p+-substrates of various orientation diagrams characterizing the distribution of pore formation rates over different directions in the wafer plane were constructed for the first time. The wagon-wheel method was applied to study the current dependence of the anisotropy. It was found that the orientation-related difference between the pore formation rates is 5% to 25%, depending on the crystallographic direction and the etching current density. At a current density of approximately 9 mA/cm2, the etching rates are related as V100:V113:V110:V112:V111 = 1.000:0.900:0.836:0.824:0.750. A general tendency is observed toward weakening of the anisotropy with increasing current. The highest rate always corresponds to the <100 > direction, and the rate ratio between the other directions varies with increasing current, which leads to a change of their sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...