Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Molecules ; 28(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446880

ABSTRACT

The behavior of nitrosyl chloride (ClNO) exposed to ionizing radiation was studied by direct probing valence-shell electrons in temporal coincidence with ions originating from the fragmentation process of the transient ClNO2+. Such a molecular dication was produced by double photoionization with synchrotron radiation in the 24-70 eV photon energy range. The experiment has been conducted at the Elettra Synchrotron Facility of Basovizza (Trieste, Italy) using a light beam linearly polarized with the direction of the polarization vector parallel to the ClNO molecular beam axis. ClNO molecules crossing the photon beam at right angles in the scattering region are generated by effusive expansion and randomly oriented. The threshold energy for the double ionization of ClNO (30.1 ± 0.1 eV) and six dissociation channels producing NO+/Cl+, N+/Cl+, N+/O+, O+/Cl+, ClN+/O+, NO+/Cl2+ ion pairs, with their relative abundance and threshold energies, have been measured.


Subject(s)
Photons , Synchrotrons , Physical Phenomena , Italy
2.
J Phys Chem A ; 127(4): 938-945, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36669091

ABSTRACT

We investigate the gas-phase structure of the neutral pentaalanine peptide. The IR spectrum in the 340-1820 cm-1 frequency range is obtained by employing supersonic jet cooling, infrared multiphoton dissociation, and vacuum-ultraviolet action spectroscopy. Comparison with quantum chemical spectral calculations suggests that the molecule assumes multiple stable conformations, mainly of two structure types. In the most stable conformation theoretically found, the N-terminus forms a C5 ring and the backbone resembles that of an 310-helix with two ß-turns. Additionally, the conformational preferences of pentaalanine have been evaluated using Born-Oppenheimer molecular dynamics, showing that a nonzero simulation time step causes a systematic frequency shift.

3.
J Am Chem Soc ; 144(48): 21878-21886, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36444673

ABSTRACT

The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation-deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction.

4.
J Chem Phys ; 157(12): 124306, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36182420

ABSTRACT

The potential for selective bond breaking of a small molecule was investigated with electron spectroscopy and electron-ion coincidence experiments on ClNO. The electron spectra were measured upon direct valence photoionization and resonant core excitation at the N 1s- and O 1s-edges, followed by the emission of resonant-Auger (RA) electrons. The RA spectra were analyzed with particular emphasis on the assignment of the participator and spectator states. The states are of special relevance for investigating how distinct electronic configurations influence selective bond breaking. The electron-ion coincidence measurements provided branching fractions of the produced ion fragments as a function of electron binding energy. They explicitly demonstrate how the final electronic states created after photoionization and RA decay influence fragmentation. In particular, we observed a significantly different branching fraction for spectator states compared with participator states. In addition, it was also observed that the bonds broken for the spectator states correlate with the antibonding nature of the spectator-electron orbital.

5.
Commun Chem ; 5(1): 42, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-36697752

ABSTRACT

Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2 and 4d5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.

6.
J Phys Chem A ; 125(34): 7449-7456, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34428065

ABSTRACT

We investigate gas-phase structures of homo- and heterochiral asparagine proton-bound dimers with infrared multiphoton dissociation (IRMPD) spectroscopy and quantum-chemical calculations. Their IRMPD spectra are recorded at room temperature in the range of 500-1875 and 3000-3600 cm-1. Both varieties of asparagine dimers are found to be charge-solvated based on their IRMPD spectra. The location of the principal intramolecular H-bond is discussed in light of harmonic frequency analyses using the B3LYP functional with GD3BJ empirical dispersion. Contrary to theoretical analyses, the two spectra are very similar.

7.
J Synchrotron Radiat ; 28(Pt 1): 64-70, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33399553

ABSTRACT

Protein dynamics contribute to protein function on different time scales. Ultrafast X-ray diffraction snapshots can visualize the location and amplitude of atom displacements after perturbation. Since amplitudes of ultrafast motions are small, high-quality X-ray diffraction data is necessary for detection. Diffraction from bovine trypsin crystals using single femtosecond X-ray pulses was recorded at FemtoMAX, which is a versatile beamline of the MAX IV synchrotron. The time-over-threshold detection made it possible that single photons are distinguishable even under short-pulse low-repetition-rate conditions. The diffraction data quality from FemtoMAX beamline enables atomic resolution investigation of protein structures. This evaluation is based on the shape of the Wilson plot, cumulative intensity distribution compared with theoretical distribution, I/σ, Rmerge/Rmeas and CC1/2 statistics versus resolution. The FemtoMAX beamline provides an interesting alternative to X-ray free-electron lasers when studying reversible processes in protein crystals.


Subject(s)
Crystallography, X-Ray , Trypsin/chemistry , Animals , Cattle , Macromolecular Substances/chemistry , Photons , Synchrotrons
8.
J Phys Chem Lett ; 11(13): 5199-5203, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32519868

ABSTRACT

Laser-induced delayed electron detachment from Si2- stored in an electrostatic ion storage ring was observed on the 10 microsecond time scale. The excitation spectra for photon energies near threshold show well-resolved multipeak structures, which are attributed to rovibronic transitions to the electronic excited state. This structure appears only in the signal measured with the delay. The occurrence of delayed detachment on such a long time scale is unusual for diatomic molecules, suggesting that both the autodetachment and fluorescence are slow.

9.
J Phys Chem A ; 124(12): 2408-2415, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32106670

ABSTRACT

The structures of three proton-bound dimers (Met2H+, MetTrpH+, and Trp2H+) are investigated in the gas phase with infrared multiple photon disassociation (IRMPD) spectroscopy in combination with quantum chemical calculations. Their IRMPD spectra in the range of 600-1850 cm-1 are obtained experimentally using an FT-ICR mass spectrometer and the CLIO free electron laser as an IR light source. The most abundant conformers are elucidated by comparing the IRMPD spectra with harmonic frequencies obtained at the B3LYP-GD3BJ/6-311++G** level of theory. Discrepancies between the experimental and theoretical data in the region of 1500-1700 cm-1 are attributed to the anharmonicity of the amino bending modes. We confirm the result of a previous IRMPD study that the structure of gas-phase Trp2H+ is charge-solvated but find that there are more stable structures than originally reported (Feng, R.; Yin, H.; Kong, X. Rapid Commun. Mass Spectrom. 2016, 30, 24-28). In addition, gas-phase Met2H+ and MetTrpH+ have been revealed to have charge-solvated structures. For all three dimers, the most stable conformer is found to be of type A. The spectrum of Met2H+, however, cannot be explained without some abundance of type B charge-solvated conformers as well as salt-bridged structures.

10.
Chirality ; 32(3): 359-369, 2020 03.
Article in English | MEDLINE | ID: mdl-31943359

ABSTRACT

Proton-bound homochiral and heterochiral dimers, X-H+ -X, of five amino acids (X = Ser, Ala, Thr, Phe, and Arg) are investigated theoretically using quantum chemical density functional theory (DFT) calculations and molecular dynamics simulations with the aim to unveil diastereomer-specific mid-infrared (mid-IR) absorption bands in the spectral range of 1000 to 1800 cm-1 . The theoretical calculations performed in this work imply that all systems, except Ala2 H+ , have distinct mid-IR absorption bands in homochiral and heterochiral configurations, which make them appropriate systems to be studied experimentally with mid-IR spectroscopy. We show that intermolecular interaction with the side chain, in the form of hydrogen bonding or cation-π interaction, is necessary for chiral effects to be present in the mid-IR spectra of proton-bound dimers of amino acids. We also report new conformers for Ala2 H+ , Thr2 H+ , Phe2 H+ , and Arg2 H+ , which were not found in earlier studies of these dimers.

11.
Sci Rep ; 9(1): 19281, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848402

ABSTRACT

Low-frequency vibrations are crucial for protein structure and function, but only a few experimental techniques can shine light on them. The main challenge when addressing protein dynamics in the terahertz domain is the ubiquitous water that exhibit strong absorption. In this paper, we observe the protein atoms directly using X-ray crystallography in bovine trypsin at 100 K while irradiating the crystals with 0.5 THz radiation alternating on and off states. We observed that the anisotropy of atomic displacements increased upon terahertz irradiation. Atomic displacement similarities developed between chemically related atoms and between atoms of the catalytic machinery. This pattern likely arises from delocalized polar vibrational modes rather than delocalized elastic deformations or rigid-body displacements. The displacement correlation between these atoms were detected by a hierarchical clustering method, which can assist the analysis of other ultra-high resolution crystal structures. These experimental and analytical tools provide a detailed description of protein dynamics to complement the structural information from static diffraction experiments.


Subject(s)
Catalysis/radiation effects , Protein Conformation/radiation effects , Proteins/ultrastructure , Trypsin/ultrastructure , Animals , Anisotropy , Cattle , Crystallography, X-Ray , Models, Molecular , Proteins/chemistry , Proteins/radiation effects , Radiation , Trypsin/chemistry , Trypsin/radiation effects , Vibration , Water/chemistry
12.
Phys Chem Chem Phys ; 21(26): 14126-14132, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-30869702

ABSTRACT

We report the gas phase conformational preferences of laser desorbed Ala-Ala dipeptides probed by action spectroscopy using the IRMPD-VUV method. The molecules were internally cooled through collisional cooling in a supersonic jet environment. An IR spectrum was obtained experimentally in the spectral range of 700-1850 cm-1, and subsequently interpreted with the help of quantum chemical calculations. Although theory predicts that folded structures have lower electronic energies and, thus, are more stable at low temperatures compared to their extended (ß-strand-like) counterparts, analysis of the experimental data concluded the extended conformer to be the most dominant. An explanation to this observation is discussed in this paper and rationalized in terms of collisional conformer relaxation processes occurring in the supersonic jet molecular beam.

13.
J Phys Chem A ; 123(4): 862-872, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30608157

ABSTRACT

In this article, we report the results of gas-phase IR spectroscopy of neutral glycylglycine (Gly-Gly) in the 700-1850 cm-1 frequency range. A combination of laser desorption, jet-cooling, and IR multiple-photon dissociation vacuum-ultraviolet (IRMPD-VUV) action spectroscopy is employed, together with extensive quantum chemical calculations that assist in the analysis of the experimental data. As a result, we determined that the most favorable conformer in the low-temperature environment of the supersonic jet is the nearly planar structure with two C5 hydrogen-bonding interactions. Calculations clearly show that this conformer is favored because of its flexibility (considerable entropy stabilization) as well as efficient conformer relaxation processes in the jet. To gain more understanding into the relative stability of the lowest-energy Gly-Gly conformers, the relative strength of hydrogen bonding and steric interactions is analyzed using the noncovalent interactions (NCI) approach.

14.
J Chem Phys ; 149(16): 164305, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30384723

ABSTRACT

The fragmentation of ClNO upon resonant core-electron excitation to the LUMO and LUMO+1 orbitals at the N and O K-edges is investigated. The produced fragment ions were detected in coincidence with a position sensitive ion time-of-flight detector which enables deduction of the angular distribution of the ions. This facilitates a comparison between the two resonances and the two K-edges with respect to fragmentation time, transition dipole moment orientation, fragment yield of single-ion and ion-pair channels, and fragmentation mechanisms. We observe significant correlations between the core-excited site and the location of the bonds that are broken, as well as the dissociation time. Moreover, we observe preferential cleavage of specific bonds upon excitation to the LUMO and LUMO+1 states which can be attributed to their orbital character.

15.
Phys Rev Lett ; 118(10): 103001, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28339240

ABSTRACT

We report on experiments which show that C_{60} can ionize in an indirect, quasithermal boiloff process after absorption of a single photon. The process involves a large number of incoherently excited valence electrons and yields electron spectra with a Boltzmann distribution with temperatures exceeding 10^{4} K. It is expected to be present for other molecules and clusters with a comparatively large number of valence electrons. The astrophysical consequences are briefly discussed.

16.
Phys Chem Chem Phys ; 18(47): 32116-32124, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27847955

ABSTRACT

We present far infrared spectra of the conformer A of tryptamine in the 200 to 500 cm-1 wavenumber range along with resonant photoionization spectra of the far-infrared excited conformer A of tryptamine. We show that single-far-infrared photon excited tryptamine has highly structured resonance enhanced multi-photon ionization spectra, revealing the mode composition of the S1-state. Upon multiple-far-infrared photon absorption, the resonance enhanced multi-photon ionization spectrum broadens allowing ion gain spectroscopy to be performed. In the ion gain spectrum we detect the fundamental far-infrared modes but also combination and overtone bands with high efficiency. The implications to dip spectroscopy using a free electron laser compared to more conventional light sources are discussed.

17.
J Chem Phys ; 145(12): 124302, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27782647

ABSTRACT

Site-specific fragmentation upon 1s photoionisation of acetaldehyde has been studied using synchrotron radiation and a multi-electron-ion coincidence technique based on a magnetic bottle. Experimental evidence is presented that bond rupture occurs with highest probability in the vicinity of the initial charge localisation and possible mechanisms are discussed. We find that a significant contribution to site-specific photochemistry is made by different fragmentation patterns of individual quantum states populated at identical ionisation energies.

18.
Phys Rev Lett ; 117(11): 118101, 2016 Sep 09.
Article in English | MEDLINE | ID: mdl-27661721

ABSTRACT

We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800 cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range.

19.
J Chem Phys ; 145(10): 104309, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27634262

ABSTRACT

Delocalized molecular vibrations in the far-infrared and THz ranges are highly sensitive to the molecular structure, as well as to intra- and inter-molecular interactions. Thus, spectroscopic studies of biomolecular structures can greatly benefit from an extension of the conventional mid-infrared to the far-infrared wavelength range. In this work, the conformer-specific gas-phase far-infrared spectra of two aromatic molecules containing the peptide -CO-NH- link, namely, 2- and 4-Methylacetanilide, are investigated. The planar conformations with trans configuration of the peptide link have only been observed in the supersonic-jet expansion. The corresponding far-infrared signatures associated with the vibrations of the peptide -CO-NH- moiety, the so-called amide IV-VI bands, have been assigned and compared with the results of density functional theory frequency calculations based on the anharmonic vibrational second-order perturbation theory approach. The analysis of the experimental and theoretical data shows that the amide IV-VI bands are highly diagnostic for the geometry of the peptide moiety and the molecular backbone. They are also strongly blue-shifted upon formation of the NH⋯O-C hydrogen bonding, which is, for example, responsible for the formation of secondary protein structures. Furthermore, the amide IV-VI bands are also diagnostic for the cis configuration of the peptide link, which can be present in cyclic peptides. The experimental gas-phase data presented in this work can assist the vibrational assignment of similar biologically important systems, either isolated or in natural environments.


Subject(s)
Acetanilides/chemistry , Amides/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Peptides/chemistry , Quantum Theory , Spectrophotometry, Infrared , Vibration
20.
J Chem Phys ; 144(24): 244310, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27369518

ABSTRACT

Near-edge X-ray absorption fine-structure (NEXAFS) spectra measured at the C, N, and O K-edges for three molecules containing the amide moiety, N-methylformamide (HCONHCH3), N,N-dimethylformamide (HCON(CH3)2), and N,N-dimethylacetamide (CH3CON(CH3)2) are presented. These molecules have similar structures and differ by the number of methyl groups located at the molecular ends. The fragmentation of these molecules after resonant excitation at different K-edge resonances is also investigated, using a 3D-ion imaging time-of-flight spectrometer. A comparison between the molecules with respect to the relative contributions of the fragments created upon excitation at distinct resonances reveals site-specific fragmentation. Further information about the character of the core-excitation and dissociation process is obtained from the angular distributions of the ion fragments.

SELECTION OF CITATIONS
SEARCH DETAIL
...