Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375125

ABSTRACT

Titanium (Ti) and its alloys are widely used in medical treatment, engineering, and other fields because of their excellent properties including biological activity, an elastic modulus similar to that of human bones, and corrosion resistance. However, there are still many defects in the surface properties of Ti in practical applications. For example, the biocompatibility of Ti with bone tissue can be greatly reduced in implants due to a lack of osseointegration as well as antibacterial properties, which may lead to osseointegration failure. To address these problems and to take advantage of the amphoteric polyelectrolyte properties of gelatin, a thin layer of gelatin was prepared by electrostatic self-assembly technology. Diepoxide quaternary ammonium salt (DEQAS) and maleopimaric acid quaternary ammonium salt (MPA-N+) were then synthesized and grafted onto the thin layer. The cell adhesion and migration experiments demonstrated that the coating has excellent biocompatibility, and those grafted with MPA-N+ promoted cell migration. The bacteriostatic experiment showed that the mixed grafting with two ammonium salts had excellent bacteriostatic performance against Escherichia coli and Staphylococcus aureus, with bacteriostasis rates of 98.1 ± 1.0% and 99.2 ± 0.5%, respectively.


Subject(s)
Ammonium Compounds , Titanium , Humans , Titanium/pharmacology , Gelatin/pharmacology , Anti-Bacterial Agents/pharmacology , Osteogenesis , Osseointegration , Surface Properties , Ammonium Compounds/pharmacology , Coated Materials, Biocompatible/pharmacology
2.
Molecules ; 28(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37241863

ABSTRACT

Thin oxide layers form easily on the surfaces of titanium (Ti) components, with thicknesses of <100 nm. These layers have excellent corrosion resistance and good biocompatibility. Ti is susceptible to bacterial development on its surface when used as an implant material, which reduces the biocompatibility between the implant and the bone tissue, resulting in reduced osseointegration. In the present study, Ti specimens were surface-negatively ionized using a hot alkali activation method, after which polylysine and polydopamine layers were deposited on them using a layer-by-layer self-assembly method, then a quaternary ammonium salt (QAS) (EPTAC, DEQAS, MPA-N+) was grafted onto the surface of the coating. In all, 17 such composite coatings were prepared. Against Escherichia coli and Staphylococcus aureus, the bacteriostatic rates of the coated specimens were 97.6 ± 2.0% and 98.4 ± 1.0%, respectively. Thus, this composite coating has the potential to increase the osseointegration and antibacterial performance of implantable Ti devices.


Subject(s)
Ammonium Compounds , Titanium , Titanium/pharmacology , Polylysine/pharmacology , Coated Materials, Biocompatible/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...