Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 150(5): 054302, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30736677

ABSTRACT

The photophysical properties of intraconfigurational metal-centered (MC) and ligand-to-metal charge transfer (LMCT) states were studied in a prototype low spin heavy d5 transition metal complex, IrBr6 2-. The femtosecond-to-picosecond dynamics of this complex was investigated in solutions of drastically different polarity (acetonitrile, chloroform, and water) by means of ultrafast broadband transient absorption spectroscopy. We observed that the system, when excited into the third excited [second LMCT, 2Uu'(T1u)] state, undergoes distortion from the Franck-Condon geometry along the t2g vibrational mode as a result of the Jahn-Teller effect, followed by rapid internal conversion to populate (90 fs) the second excited [first LMCT, 2Ug'(T1g)] state. Vibrational decoherence and vibrational relaxation (∼400 fs) in 2Ug'(T1g) precede the decay of this state via internal conversion (time constants, 2.8 and 3 ps in CH3CN and CHCl3 and 0.76 ps in water), which can also be viewed as back electron transfer and which leads into the intraconfigurational MC 2Ug'(T2g) state. This is the lowest-excited state, from which the system returns to the ground state. This MC state is metastable in both CH3CN and CHCl3 (lifetime, ∼360 ps), but is quenched via OH-mediated energy transfer in aqueous environments, with the lifetime shortening up to 21 ps in aqueous solutions. The cascade relaxation mechanism is the same upon excitation into the second excited state. Excitation of IrBr6 2- in chloroform into higher 2Uu'(T2u), 2Eu″(T2u), and 2Eg'(T1g) states is observed to populate the third excited 2Uu'(T1u) state within 100 fs. These experiments allow us to resolve the ultrafast relaxation coordinate and emphasize that the excited-state Jahn-Teller effect is a driving force in the ultrafast dynamics, even for heavy transition metal complexes with very significant spin-orbit interactions.

2.
J Phys Chem B ; 119(29): 9335-44, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-25369524

ABSTRACT

The photoisomerization dynamics of trans-stilbene have been well studied in the lowest excited state, but much less is known about the behavior following excitation to higher-lying electronically excited states. This contribution reports a combined study of the spectroscopy and dynamics of two-photon accessible states above S1. Two-photon absorption (2PA) measurements using a broadband pump-probe technique reveal distinct bands near 5.1 and 6.4 eV. The 2PA bands have absolute cross sections of 40 ± 16 and 270 ± 110 GM, respectively, and a pump-probe polarization dependence that suggests both of the transitions access Ag-symmetry excited states. Separate transient absorption measurements probe the excited-state dynamics following two-photon excitation into each of the bands using intense pulses of 475 and 380 nm light, respectively. The initially excited states rapidly relax via internal conversion, leading to the formation of an S1 excited-state absorption band that is centered near 585 nm and evolves on a time scale of 1-2 ps due to intramolecular vibrational relaxation. The subsequent evolution of the S1 excited-state absorption is identical to the behavior following direct one-photon excitation of the lowest excited state at 4.0 eV. The complementary spectroscopy and dynamics measurements provide new benchmarks for computational studies of the electronic structure and dynamics of this model system on excited states above S1. Probing the dynamics of molecules in their higher-lying excited states is an important frontier in chemical reaction dynamics.

3.
Phys Chem Chem Phys ; 14(18): 6211-8, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22231712

ABSTRACT

Ultrafast transient absorption spectroscopy monitors the solution-phase dynamics of 2-phenylthiophene (PT), 2-methyl-5-phenylthiophene (MPT), and 2,4-dimethyl-5-phenylthiophene (DMPT) following excitation to the first singlet excited state. Rapid spectral evolution indicates that structural relaxation on the S(1) potential energy surface occurs within ~100 fs, whereas the picosecond-scale kinetics reveal efficient intersystem crossing to the triplet manifold of states. The rate of intersystem crossing is significantly faster for DMPT (21.6 ± 1.0 ps) than for PT (102 ± 5 ps) and MPT (132 ± 3 ps). The measurements provide new limits on the timescale for a competing isomerization reaction in which the phenyl group changes position on the thiophene ring. The role of methyl substitution in driving the intersystem crossing is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...