Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 327
Filter
1.
ACS Nano ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870206

ABSTRACT

Second harmonic generation (SHG) in van der Waals (vdW) materials has garnered significant attention due to its potential for integrated nonlinear optical and optoelectronic applications. Stacking faults in vdW materials are a typical kind of planar defect that introduces a degree of freedom to modulate the crystal symmetry and resultant SHG response. However, the physical origin and tunability of stacking-fault-governed SHG in vdW materials remain unclear. Here, taking the intrinsically centrosymmetric vdW RhI3 as an example, we theoretically reveal the origin of stacking-fault-governed SHG response, where the SHG response comes from the energetically favorable AC̅ stacking fault of which the electrical transitions along the high-symmetry paths Γ-M and Γ-K in the Brillion zone play the dominant role at 810 nm. Such a stacking-fault-governed SHG response is further confirmed via structural characterizations and SHG measurements. Furthermore, by applying hydrostatic pressure on RhI3, the correlation between structural evolution and SHG response is revealed with SHG enhancement up to 6.9 times, where the decreased electronic transition energies and higher momentum matrix elements due to the stronger interlayer interactions upon compression magnify the SHG susceptibility. This study develops a promising foundation for nonlinear nano-optics applications through the strategic design of stacking faults.

2.
Am J Cancer Res ; 14(5): 2072-2087, 2024.
Article in English | MEDLINE | ID: mdl-38859866

ABSTRACT

Heat shock factor 1 (HSF1), an essential transcription factor for stress response, is exploited by various tumors to facilitate their initiation, progression, invasion, and migration. Amplification of HSF1 is widely regarded as an indicator in predicting cancer severity, the likelihood of treatment failure and reduced patient survival. Notably, HSF1 is markedly amplified in 40% of pancreatic cancer (PC), which typically have limited treatment options. HSF1 has been proven to be a promising therapeutic target for multiple cancers. However, a direct small molecule HSF1 inhibitor with sufficient bioactivity and reliable safety has not been developed clinically. In this study, we successfully established a high-throughput screening system utilizing luciferase reporter assay specifically designed for HSF1, which leads to the discovery of a potent small molecule inhibitor targeting HSF1. Homoharringtonine (HHT) selectively inhibited PC cell viability with high HSF1 expression and induced a markedly stronger tumor regression effect in the subcutaneous xenograft model than the comparator drug KRIBB11, known for its direct action on HSF1. Moreover, HHT shows promise in countering the resistance encountered with HSP90 inhibitors, which have been observed to increase heat shock response intensity in clinical trials. Mechanistically, HHT directly bound to HSF1, suppressing its expression and thereby inhibiting transcription of HSF1 target genes. In conclusion, our work presents a preclinical discovery and validation for HHT as a HSF1 inhibitor for PC treatment.

3.
ACS Nano ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867607

ABSTRACT

Integration of atomically thin nonlinear optical (NLO) devices demands an out-of-plane (OP) emission dipole of second harmonic generation (SHG) to enhance the spontaneous emission for nanophotonics. However, the research on van der Waals (vdWs) materials with an OP emission dipole of SHG is still in its infancy. Here, by coupling back focal plane (BFP) imaging with numerical simulations and density functional theory (DFT) calculations, we demonstrate that vdWs Janus Nb3SeI7, ranging from bulk to the monolayer limit, exhibits a dominant OP emission dipole of SHG owing to the breaking of the OP symmetry. Explicitly, even-layered Nb3SeI7 with C6v symmetry is predicted to exhibit a pure OP emission dipole attributed to the only second-order susceptibility coefficient χzxx. Meanwhile, although odd-layered Nb3SeI7 with C3v symmetry has both OP and IP dipole components (χzxx and χyyy), the value of χzxx is 1 order of magnitude greater than that of χyyy, leading to an approximate OP emission dipole of SHG. Moreover, the crystal symmetry and OP emission dipole can be preserved under hydrostatic pressure, accompanied by the enhanced χzxx and the resulting 3-fold increase in SHG intensity. The reported stable OP dipole in 2D vdWs Nb3SeI7 can facilitate the rapid development of chip-integrated NLO devices.

4.
ACS Nano ; 18(13): 9636-9644, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38497667

ABSTRACT

A two-dimensional (2D) ferroelectric semiconductor, which is coupled with photosensitivity and room-temperature ferroelectricity, provides the possibility of coordinated conductance modulation by both electric field and light illumination and is promising for triggering the revolution of optoelectronics for monolithic multifunctional integration. Here, we report that semiconducting Sn2P2S6 crystals can be achieved in a 2D morphology using a chemical vapor transport approach with the assistant of space confinement and experimentally demonstrate the robust ferroelectricity in atomic-thin Sn2P2S6 nanosheet at room temperature. The intercorrelated programming of ferroelectric order along out-of-plane (OOP) and in-plane (IP) directions enables a tunable bulk photovoltaic (BPV) effect through multidirectional electrical control. By combining the capability of anisotropic in-plane optical absorption, a highly integrated Sn2P2S6 optoelectronic device vertically sandwiched with graphene electrodes yields the polarization-dependent open-circuit photovoltage with a dichroic ratio of 2.0 under 405 nm light illumination. The reintroduction of ferroelectric Sn2P2S6 to the 2D asymmetric semiconductor family provides possibilities to hardware implement of the self-powered polarization-sensitive photodetection and spotlights the promising applications for next-generation photovoltaic devices.

5.
Crit Rev Oncol Hematol ; 196: 104273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382772

ABSTRACT

BACKGROUND: Researchers have shown that using next-generation hormonal agents (NHA) for castration-resistant prostate cancer (CRPC) would lead to increased risk of cardiac adverse effects, making clinician choices more complex. METHODS: We systematically searched Pubmed, Cochrane Library, and Embase databases for research published before October 2022. Agents were ranked according to their effectiveness based on cardiac adverse effects using the surface under the cumulative ranking curve. RESULTS: A total of 21 Randomized Controlled Trials (RCT) with 19, 083 patients were included in present study. Our results showed that abiraterone and enzalutamide could lead to a significantly higher hypertension rate compared with placebo; whereas no significant difference was detected between four NHAs and placebo in ischemic heart disease incidence. All four NHAs could significantly increase the risk of cardiotoxicity. CONCLUSIONS: NHAs are generally acceptable in terms of cardiovascular disease compared to placebo in patients with CRPC.


Subject(s)
Cardiovascular Diseases , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Cardiovascular Diseases/chemically induced , Phenylthiohydantoin/adverse effects , Benzamides/therapeutic use , Nitriles/therapeutic use , Randomized Controlled Trials as Topic
6.
Huan Jing Ke Xue ; 45(1): 61-70, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216458

ABSTRACT

In August 2022, Chengdu and Chongqing showed significant differences in ozone (O3) pollution. Chengdu had O3 pollution days for 20 days, whereas Chongqing had no O3 pollution days. In this study, we analyzed the influencing factors of this difference from the emission level of precursors and meteorological conditions. The results showed that:① the total mixing ratio of 52 VOCs (volatile organic compounds) (including 26 alkanes, 16 aromatics, and 10 alkenes) in Chengdu (18.8×10-9) was 2.8 times that of Chongqing (6.6×10-9), and the total O3 formation potential (OFP) (51.2×10-9) was 2.0 times that of Chongqing (25.0×10-9). The·OH radical loss rate (L·OH) (3.9 s-1) was 1.7 times that of Chongqing (2.3 s-1). The top three OFP in Chengdu were ethylene, m/p-xylene, and isoprene, and those in Chongqing were isoprene, ethylene, and propylene. The contribution rate of alkenes to O3 in Chongqing was 60.7%, whereas the OFP of alkenes and aromatics in Chengdu were 1.6 times and 2.9 times that in Chongqing. In conclusion, the total mixing ratio of VOCs, atmospheric photochemical activity, and O3 formation potential of Chengdu were higher than those of Chongqing. ② Isoprene was ranked first place in L·OH in both Chengdu and Chongqing, indicating that the contribution of biogenic sources to O3 pollution in August was significant. However, the biogenic source emission activity was in response to temperature. From August 14 to 24, the high temperature in Chongqing (38.3℃) decreased biogenic source emission activity, whereas the temperature in Chengdu (34.9℃) increased the biogenic sources emission activity. ③ The horizontal and vertical atmospheric diffusion conditions of Chongqing were better than those of Chengdu, and Chengdu was affected by regional pollution transmission.

7.
Huan Jing Ke Xue ; 45(1): 48-60, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216457

ABSTRACT

To investigate the characteristics, source apportionment, and potential source areas of carbonaceous aerosols in Chongqing during winter, PM2.5 samples were collected from January 2021 to February 2021 in the urban areas of Wanzhou (WZ), Yubei (YB), and Shuangqiao (SQ). The results showed that the average mass concentrations of PM2.5, OC, and EC in SQ were (72.6 ±33.3), (18.2 ±8.2), and (4.4 ±1.7) µg·m-3, respectively, higher than those in WZ[(67.2 ±30.3), (17.2 ±7.4), and (5.1 ±2.4) µg·m-3] and YB[(63.4 ±25.7), (15.4 ±6.3), and (4.2 ±1.9) µg·m-3]. Compared with that during the clear period, the concentration and fraction of EC in total carbon increased by 103.0% and 8.1%, respectively, in WZ compared to that in other areas during pollution period, whereas the OC/EC ratio was decreased significantly (-10.5%), indicating that the primary emission of carbonaceous aerosols increased significantly during the pollution period. The average mass concentrations of secondary organic carbon (SOC) in SQ and YB were (7.7 ±4.8) µg·m-3 and (6.9 ±2.8) µg·m-3 significantly higher, respectively, than that in WZ[(4.5 ±1.9) µg·m-3] during the campaign. This indicated that the secondary transformation had a greater influence on the carbonaceous aerosols in SQ and YB than that in WZ. Furthermore, in contrast to that in WZ, the ratios of SOC/OC were increased with the increase in PM2.5 concentrations, and significant correlations between SOC concentration and aerosol water content, NO2 concentration, and the value of NOR were observed in SQ and YB (P < 0.01), indicating that the increasing of carbonaceous aerosol concentrations might be mainly driven by the SOC with -NO2 groups produced by aqueous chemical reactions during winter in SQ and YB. The positive definite matrix factor (PMF) results in these urban areas showed that the contribution of biomass/coal combustion source in WZ (47.4%) was significantly higher than that in YB (34.2%) and SQ (38.1%), whereas the gasoline motor vehicle emission and secondary transformation impacts were more significant in YB. The results of the concentration weighted trajectory (CWT) showed that the potential sources of carbonaceous aerosols were mainly the local and northeastern parts of these urban areas (such as Changshou).

8.
Heliyon ; 10(2): e24330, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288011

ABSTRACT

In the past few decades, organic solvent nanofiltration (OSN) has attracted numerous researchers and broadly applied in various fields. Unlike conventional nanofiltration, OSN always faced a broad spectrum of solvents including polar solvents and non-polar solvents. Among those recently developed OSN membranes in lab-scale or widely used commercial membranes, researchers preferred to explore intrinsic materials or introduce nanomaterials into membranes to fabricate OSN membranes. However, the hydrophilicity of the membrane surface towards filtration performance was often ignored, which was the key factor in conventional aqueous nanofiltration. The influence of surface hydrophilicity on OSN performance was not studied systematically and thoroughly. Generally speaking, the hydrophilic OSN membranes performed well in the polar solvents while the hydrophobic OSN membranes work well in the non-polar solvent. Many review papers reviewed the basics, problems of the membranes, up-to-date studies, and applications at various levels. In this review, we have focused on the relationship between the surface hydrophilicity of OSN membranes and OSN performances. The history, theory, and mechanism of the OSN process were first recapped, followed by summarizing representative OSN research classified by surface hydrophilicity and types of membrane, which recent OSN research with its contact angles and filtration performance were listed. Finally, from the industrialization perspective, the application progress of hydrophilic and hydrophobic OSN membranes was introduced. We started with history and theory, presented many research and application cases of hydrophilic and hydrophobic OSN membranes, and discussed anticipated progress in the OSN field. Also, we pointed out some future research directions on the hydrophilicity of OSN membranes to deeply develop the effect made by membrane hydrophilicity on OSN performance for future considerations and stepping forward of the OSN industry.

9.
Anticancer Drugs ; 35(1): 1-11, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37104099

ABSTRACT

Gastric cancer has been a constant concern to researchers as one of the most common malignant tumors worldwide. The treatment options for gastric cancer include surgery, chemotherapy and traditional Chinese medicine. Chemotherapy is an effective treatment for patients with advanced gastric cancer. Cisplatin (DDP) has been approved as a critical chemotherapy drug to treat various kinds of solid tumors. Although DDP is an effective chemotherapeutic agent, many patients develop drug resistance during treatment, which has become a severe problem in clinical chemotherapy. This study aims to investigate the mechanism of DDP resistance in gastric cancer. The results show that intracellular chloride channel 1 (CLIC1) expression was increased in AGS/DDP and MKN28/DDP, and as compared to the parental cells, autophagy was activated. In addition, the sensitivity of gastric cancer cells to DDP was decreased compared to the control group, and autophagy increased after overexpression of CLIC1. On the contrary, gastric cancer cells were more sensitive to cisplatin after transfection of CLIC1siRNA or treatment with autophagy inhibitors. These experiments suggest that CLIC1 could alter the sensitivity of gastric cancer cells to DDP by activating autophagy. Overall, the results of this study recommend a novel mechanism of DDP resistance in gastric cancer.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Autophagy , Cell Line, Tumor , Apoptosis , Cell Proliferation , Chloride Channels/genetics , Chloride Channels/pharmacology , Chloride Channels/therapeutic use
10.
Adv Sci (Weinh) ; 11(4): e2306159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38044305

ABSTRACT

The infertile electromagnetic (EM) attenuating behavior of carbon material makes the improvement of its performance remain a significant challenge. Herein, a facile and low-cost strategy radically distinct from the prevalent approaches by constructing polar covalent bonds between sp2 -hybridized and sp3 -hybridized carbon atoms to introduce strong dipolar polarization is proposed. Through customizing and selectively engineering the N moieties conjugated with carbon rings, the microstructure of the as-synthesized 2D nanosheet is gradually converted with the partial transition from sp3 carbons to sp2 carbons, where the electric dipoles between them are also tuned. Supported by the DFT calculations, a progressively enhanced sp2 ─sp3 C─C dipolar polarization is caused by this controllable structure evolution, which is demonstrated to contribute dominantly to the total dielectric loss. By virtue of this unduplicated loss behavior, a remarkable effective absorption bandwidth (EAB) beyond -10 dB of 8.28 GHz (2.33 mm) and an ultrawide EAB beyond -5 dB of 13.72 GHz (4.93 mm) are delivered, which upgrade the EM performance of carbon material to a higher level. This study not only demonstrates the huge perspective of sp2 ─sp3 -hybridized carbon in EM elimination but also gives pioneering insights into the carbon-carbon polarization mechanism for guiding the development of advanced EM absorption materials.

11.
Small ; 20(7): e2305658, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798674

ABSTRACT

Defect engineering is promising to tailor the physical properties of 2D semiconductors for function-oriented electronics and optoelectronics. Compared with the extensively studied 2D binary materials, the origin of defects and their influence on physical properties of 2D ternary semiconductors are not clarified. Here, the effect of defects on the electronic structure and optical properties of few-layer hexagonal Znln2 S4 is thoroughly studied via versatile spectroscopic tools in combination with theoretical calculations. It is demonstrated that the Zn-In antistructural defects induce the formation of a series of donor and acceptor energy levels and sulfur vacancies induce donor energy levels, leading to rich recombination paths for defect emission and extrinsic absorption. Impressively, the emission of donor-acceptor pair in Znln2 S4 can be significantly tailored by electrostatic gating due to efficient tunability of Fermi level (Ef ). Furthermore, the layer-dependent dipole orientation of defect emission in Znln2 S4 is directly revealed by back focal plane imagining, where it presents obviously in-plane dipole orientation within a dozen-layer thickness of Znln2 S4 . These unique features of defects in Znln2 S4 including extrinsic absorption, rich recombination paths, gate tunability, and in-plane dipole orientation are definitely a benefit to the advanced orientation-functional optoelectronic applications.

12.
Small ; 20(6): e2305700, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37797186

ABSTRACT

It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO2 is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N4 active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N4 active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm-2 and stable discharging voltage plateau over 140 h.

13.
Small ; 20(8): e2307863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37822157

ABSTRACT

The low energy efficiency and limited cycling life of rechargeable Zn-air batteries (ZABs) arising from the sluggish oxygen reduction/evolution reactions (ORR/OERs) severely hinder their commercial deployment. Herein, a zeolitic imidazolate framework (ZIF)-derived strategy associated with subsequent thermal fixing treatment is proposed to fabricate dual-atom CoFe─N─C nanorods (Co1 Fe1 ─N─C NRs) containing atomically dispersed bimetallic Co/Fe sites, which can promote the energy efficiency and cyclability of ZABs simultaneously by introducing the low-potential oxidation redox reactions. Compared to the mono-metallic nanorods, Co1 Fe1 ─N─C NRs exhibit remarkable ORR performance including a positive half-wave potential of 0.933 V versus reversible hydrogen electrode (RHE) in alkaline electrolyte. Surprisingly, after introducing the potassium iodide (KI) additive, the oxidation overpotential of Co1 Fe1 ─N─C NRs to reach 10 mA cm-2 can be significantly reduced by 395 mV compared to the conventional destructive OER. Theoretical calculations show that the markedly decreased overpotential of iodide oxidation can be ascribed to the synergistic effects of neighboring Co─Fe diatomic sites as the unique adsorption sites. Overall, aqueous ZABs assembled with Co1 Fe1 ─N─C NRs and KI as the air-cathode catalyst and electrolyte additive, respectively, can deliver a low charging voltage of 1.76 V and ultralong cycling stability of over 230 h with a high energy efficiency of ≈68%.

14.
Heliyon ; 9(11): e21538, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027643

ABSTRACT

Study design and objection: Idiopathic pulmonary fibrosis (IPF) is a progressive chronic disease characterized by damage to alveolar epithelial cells and abnormal deposition of the extracellular matrix. Although the disease course for most patients with IPF is progressive, in some cases the disease may appear as an acute exacerbation. Mechanical ventilation life support plays an important role in the treatment of patients with IPF but is associated with an increased risk of acute exacerbation of IPF (AE-IPF). Treatment is controversial and is not supported by sufficient clinical evidence. AE-IPF after lung cancer surgery is extremely rare, and the etiology and mechanism remain unclear, and its clinical manifestations are very similar to acute pulmonary edema and are easily misdiagnosed. Summaryof background data: We describe a 66-year-old male patient with IPF complicated with lung cancer who underwent thoracoscopic resection of the right upper lobe of the lung. Seventy-two hours after surgery, chest computed tomography indicated that AE-IPF in the mechanically ventilated lung was significantly greater than that in the operated lung. The patient's own lung was used as a control and proved that mechanical ventilation can lead to AE-IPF. Results and conclusions: By highlighting the clinical characteristics of patients with acute exacerbation of idiopathic pulmonary fibrosis, this article will enhance the vigilance of clinicians on AE-IPF caused by mechanical ventilation. Importantly, preoperative nintedanib therapy should be applied in advance to prevent AE-IPF on in patients with mild IPF. Precise pulmonary protective ventilation strategies need to be formulated for patients with IPF to reduce mortality.

15.
Nat Commun ; 14(1): 6736, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872169

ABSTRACT

Neuro-inspired vision systems hold great promise to address the growing demands of mass data processing for edge computing, a distributed framework that brings computation and data storage closer to the sources of data. In addition to the capability of static image sensing and processing, the hardware implementation of a neuro-inspired vision system also requires the fulfilment of detecting and recognizing moving targets. Here, we demonstrated a neuro-inspired optical sensor based on two-dimensional NbS2/MoS2 hybrid films, which featured remarkable photo-induced conductance plasticity and low electrical energy consumption. A neuro-inspired optical sensor array with 10 × 10 NbS2/MoS2 phototransistors enabled highly integrated functions of sensing, memory, and contrast enhancement capabilities for static images, which benefits convolutional neural network (CNN) with a high image recognition accuracy. More importantly, in-sensor trajectory registration of moving light spots was experimentally implemented such that the post-processing could yield a high restoration accuracy. Our neuro-inspired optical sensor array could provide a fascinating platform for the implementation of high-performance artificial vision systems.

17.
Small ; 19(45): e2303654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37415518

ABSTRACT

Laser-driven phase transition of 2D transition metal dichalcogenides has attracted much attention due to its high flexibility and rapidity. However, there are some limitations during the laser irradiation process, especially the unsatisfied surface ablation, the inability of nanoscale phase patterning, and the unexploited physical properties of new phase. In this work, the well-controlled femtosecond (fs) laser-driven transformation from the metallic 2M-WS2 to the semiconducting 2H-WS2 is reported, which is confirmed to be a single-crystal to single-crystal transition without layer thinning or obvious ablation. Moreover, a highly ordered 2H/2M nano-periodic phase transition with a resolution of ≈435 nm is achieved, breaking through the existing size bottleneck of laser-driven phase transition, which is attributed to the selective deposition of plasmon energy induced by fs laser. It is also demonstrated that the achieved 2H-WS2 after laser irradiation contains rich sulfur vacancies, which exhibits highly competitive ammonia gas sensing performance, with a detection limit below 0.1 ppm and a fast response/recovery time of 43/67 s at room temperature. This study provides a new strategy for the preparation of the phase-selective transition homojunction and high-performance applications in electronics.

18.
Small ; 19(43): e2301798, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37357158

ABSTRACT

Electric double layer (EDL) devices based on 2D materials have made great achievements for versatile electronic and opto-electronic applications; however, the ion dynamics and electric field distribution of the EDL at the electrolyte/2D material interface and their influence on the physical properties of 2D materials have not been clearly clarified. In this work, by using Kelvin probe force microscope and steady/transient optical techniques, the character of the EDL and its influence on the optical properties of monolayer transition metal dichalcogenides (TMDs) are probed. The potential drop, unscreened EDL potential distribution, and accumulated carriers at the electrolyte/TMD interface are revealed, which can be explained by nonlinear Thomas-Fermi theory. By monitoring the potential distribution along the channel, the evolution of the electric field-induced lateral junction in the TMD EDL transistor is accessed, giving rise to the better exploration of EDL device physics. More importantly, EDL gate-dependent carrier recombination and exciton-exciton annihilation in monolayer TMDs on lithium-ion solid state electrolyte (Li2 Al2 SiP2 TiO13 ) are evaluated for the first time, benefiting from the understanding of the interaction between ions, carriers, and excitons. The work will deepen the understanding of the EDL for the exploitation of functional device applications.

19.
Nat Commun ; 14(1): 2521, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130849

ABSTRACT

Two-dimensional (2D) layered semiconductors with nonlinear optical (NLO) properties hold great promise to address the growing demand of multifunction integration in electronic-photonic integrated circuits (EPICs). However, electronic-photonic co-design with 2D NLO semiconductors for on-chip telecommunication is limited by their essential shortcomings in terms of unsatisfactory optoelectronic properties, odd-even layer-dependent NLO activity and low NLO susceptibility in telecom band. Here we report the synthesis of 2D SnP2Se6, a van der Waals NLO semiconductor exhibiting strong odd-even layer-independent second harmonic generation (SHG) activity at 1550 nm and pronounced photosensitivity under visible light. The combination of 2D SnP2Se6 with a SiN photonic platform enables the chip-level multifunction integration for EPICs. The hybrid device not only features efficient on-chip SHG process for optical modulation, but also allows the telecom-band photodetection relying on the upconversion of wavelength from 1560 to 780 nm. Our finding offers alternative opportunities for the collaborative design of EPICs.

20.
Am J Cancer Res ; 13(4): 1533-1546, 2023.
Article in English | MEDLINE | ID: mdl-37168345

ABSTRACT

Prostate cancer is one of the most lethal malignancies, and androgen deprivation therapy remains the mainstay of treatment for prostate cancer patients. Although androgen deprivation can initially come to remission, the disease often develops into castration-resistant prostate cancer (CRPC), which is still dependent on androgen receptor (AR) signaling and is related to a poor prognosis. Some success against CRPC has been achieved by drugs that target AR signaling, but secondary resistance uninterrupted emerges, and new therapies are urgently needed. In this study, we identified a potent small molecule compound, ZY-444, that suppressed PCa cells proliferation and metastasis, and inhibited tumor growth both in subcutaneous. Transcriptome sequencing analysis showed that TNFAIP3 was significantly elevated in prostate cancer cells after ZY-444 treatment. Further studies through overexpression of TNFAIP3 confirmed that TNFAIP3, as a direct target gene of ZY-444, contributes to the functions of ZY-444. In addition, we demonstrated the effects of TNFAIP3 on prostate cancer cell apoptosis, migration and proliferation to elucidate the mechanism of ZY-444. We found that TNFAIP3 inhibited the TNF signaling pathway, which could inhibit cell migration and proliferation and contribute to apoptosis. Overall, these findings highlighted TNFAIP3 as a tumor suppressor gene in the regulation of the progression and metastatic potential of prostate cancer and that targeting TNFAIP3 by ZY-444 might be a promising strategy for prostate cancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...