Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 672: 574-588, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38852358

ABSTRACT

In this paper, microgels with uniform particle size were prepared by physically cross-linking the hydrophobically modified chitosan (h-CS) with sodium phytate (SP). The effects of cross-linking density on the interfacial adsorption kinetics, viscoelasticity, stress relaxation, and micorheological properties of the hydrophobically modified chitosan microgels (h-CSMs) at the oil-water interface were extensively investigated by the dilatational rheology, compressional rheology, and particle tracing microrheology. The results were correlated with the particle size, morphology, and elasticity of the microgels characterized by dynamic light scattering and atomic force microscopy. It was found that with the increase of cross-linking density, the h-CSMs changed from a polymer-like state to ultra-soft fussy spheres with higher elastic modulus. The compression isotherms demonstrated multi-stage increase caused by the interaction between the shells and that between the cores of the microgels successively. As the increase of cross-linking density, the h-CSMs diffused slower to the oil-water interface, but demonstrating faster permeation adsorption and rearrangement at the oil-water interface, finally forming interfacial layers of higher viscoelastic modulus due to the core-core interaction. Both the initial tension relaxation and the microgel rearrangement after interface expansion became faster as the microgel elasticity increased. The interfacial microrheology demonstrated dynamic caging effect caused by neighboring microgels. This article provides a more comprehensive understanding of the behaviors of polysaccharide microgels at the oil-water interface.

2.
Chem Sci ; 14(33): 8777-8784, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37621421

ABSTRACT

The complex reconstructed structure of materials can be revealed by global optimization. This paper describes a hybrid evolutionary algorithm (HEA) that combines differential evolution and genetic algorithms with a multi-tribe framework. An on-the-fly machine learning calculator is adopted to expedite the identification of low-lying structures. With a superior performance to other well-established methods, we further demonstrate its efficacy by optimizing the complex oxidized surface of Pt/Pd/Cu with different facets under (4 × 4) periodicity. The obtained structures are consistent with experimental results and are energetically lower than the previously presented model.

3.
Foods ; 12(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37509875

ABSTRACT

A dihydromyricetin (DMY)/α-lactoalbumin (α-La) covalent complex was prepared and characterized, and its application in nano-emulsions was also evaluated in this study. The results suggested that the covalent complex could be obtained using the alkaline method. The UV and IR spectra confirmed the formation of the covalent complex, and the amount of DMY added was positively correlated with the total phenol content of the complex. The complex had an outstanding 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-radical-scavenging ability, reducing power and α-glucosidase inhibitory activity, which were positively related to its total phenol content. The complex could be used as an emulsifier to stabilize the ß-carotene-loaded nano-emulsion. The stability and ß-carotene-protective capacity of the nano-emulsion stabilized by the complex were also positively related to the total phenol content of the complex, being higher than those of the nano-emulsion developed using α-La. Our results provide a reference for the construction of a new food delivery system and extend the applications of α-La and DMY in foods.

4.
Chem Sci ; 14(29): 7966-7972, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37502326

ABSTRACT

The grain boundaries (GBs) in copper (Cu) electrocatalysts have been suggested as active sites for CO2 electroreduction to ethanol. Nevertheless, the mechanisms are still elusive. Herein, we describe how GBs tune the activity and selectivity for ethanol on two representative Cu-GB models, namely Cu∑3/(111) GB and Cu∑5/(100) GB, using joint first-principles calculations and experiments. The unique geometric structures on the GBs facilitate the adsorption of bidentate intermediates, *COOH and *CHO, which are crucial for CO2 activation and CO protonation. The decreased CO-CHO coupling barriers on the GBs can be rationalized via kinetics analysis. Furthermore, when introducing GBs into Cu (100), the product is selectively switched from ethylene to ethanol, due to the stabilization effect for *CH3CHO and inapposite geometric structure for *O adsorption, which are validated by experimental trends. An overall 12.5 A current and a single-pass conversion of 5.18% for ethanol can be achieved over the synthesized Cu-GB catalyst by scaling up the electrode into a 25 cm2 membrane electrode assembly system.

5.
J Am Chem Soc ; 145(12): 6622-6627, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36939299

ABSTRACT

Copper (Cu) can efficiently catalyze the electrochemical CO2 reduction reaction (CO2RR) to produce value-added fuels and chemicals, among which methane (CH4) has drawn attention due to its high mass energy density. However, the linear scaling relationship between the adsorption energies of *CO and *CHxO on Cu restricts the selectivity toward CH4. Alloying a secondary metal in Cu provides a new freedom to break the linear scaling relationship, thus regulating the product distribution. This paper describes a controllable electrodeposition approach to alloying Cu with oxophilic metal (M) to steer the reaction pathway toward CH4. The optimized La5Cu95 electrocatalyst exhibits a CH4 Faradaic efficiency of 64.5%, with the partial current density of 193.5 mA cm-2. The introduction of oxophilic La could lower the energy barrier for *CO hydrogenation to *CHxO by strengthening the M-O bond, which would also promote the breakage of the C-O bond in *CH3O for the formation of CH4. This work provides a new avenue for the design of Cu-based electrocatalysts to achieve high selectivity in CO2RR through the modulation of the adsorption behaviors of key intermediates.

6.
Angew Chem Int Ed Engl ; 62(19): e202300122, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36892274

ABSTRACT

Developing easily accessible descriptors is crucial but challenging to rationally design single-atom catalysts (SACs). This paper describes a simple and interpretable activity descriptor, which is easily obtained from the atomic databases. The defined descriptor proves to accelerate high-throughput screening of more than 700 graphene-based SACs without computations, universal for 3-5d transition metals and C/N/P/B/O-based coordination environments. Meanwhile, the analytical formula of this descriptor reveals the structure-activity relationship at the molecular orbital level. Using electrochemical nitrogen reduction as an example, this descriptor's guidance role has been experimentally validated by 13 previous reports as well as our synthesized 4 SACs. Orderly combining machine learning with physical insights, this work provides a new generalized strategy for low-cost high-throughput screening while comprehensive understanding the structure-mechanism-activity relationship.

7.
Nat Commun ; 13(1): 7768, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36522322

ABSTRACT

The reduction of carbon dioxide using electrochemical cells is an appealing technology to store renewable electricity in a chemical form. The preferential adsorption of oxygen over carbon atoms of intermediates could improve the methanol selectivity due to the retention of C-O bond. However, the adsorbent-surface interaction is mainly related to the d states of transition metals in catalysts, thus it is difficult to promote the formation of oxygen-bound intermediates without affecting the carbon affinity. This paper describes the construction of a molybdenum-based metal carbide catalyst that promotes the formation and adsorption of oxygen-bound intermediates, where the sp states in catalyst are enabled to participate in the bonding of intermediates. A high Faradaic efficiency of 80.4% for methanol is achieved at -1.1 V vs. the standard hydrogen electrode.

8.
Chem Sci ; 13(33): 9537-9543, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36091913

ABSTRACT

PtCu single-atom alloys (SAAs) open an extensive prospect for heterogeneous catalysis. However, as the host of SAAs, Cu suffers from severe sintering at elevated temperature, resulting in poor stability of catalysts. This paper describes the suppression of the agglomeration of Cu nanoparticles under high temperature conditions using copper phyllosilicate (CuSiO3) as the support of PtCu SAAs. Based on quasi in situ XPS, in situ CO-DRIFTS, in situ Raman spectroscopy and in situ XRD, we demonstrated that the interfacial Cu+-O-Si formed upon reduction at 680 °C serves as the adhesive between Cu nanoparticles and the silicon dioxide matrix, strengthening the metal-support interaction. Consequently, the resistance to sintering of PtCu SAAs was improved, leading to high catalytic stability during propane dehydrogenation without sacrificing conversion and selectivity. The optimized PtCu SAA catalyst achieved more than 42% propane conversion and 93% propylene selectivity at 580 °C for at least 30 hours. It paves a way for the design and development of highly active supported single-atom alloy catalysts with excellent thermal stability.

9.
Angew Chem Int Ed Engl ; 61(35): e202206758, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35760755

ABSTRACT

Understanding the structure-activity relationship of surface lattice oxygen is critical but challenging to design efficient redox catalysts. This paper describes data-driven redox activity descriptors on doped vanadium oxides combining density functional theory and interpretable machine learning. We corroborate that the p-band center is the most crucial feature for the activity. Besides, some features from the coordination environment, including unoccupied d-band center, s- and d-band fillings, also play important roles in tuning the oxygen activity. Further analysis reveals that data-driven descriptors could decode more information about electron transfer during the redox process. Based on the descriptors, we report that atomic Re- and W-doping could inhibit over-oxidation in the chemical looping oxidative dehydrogenation of propane, which is verified by subsequent experiments and calculations. This work sheds light on the structure-activity relationship of lattice oxygen for the rational design of redox catalysts.

10.
Foods ; 11(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35267301

ABSTRACT

We performed ultrasound-assisted extraction coupled with natural deep eutectic solvents (NADES) to achieve the green and efficient preparation of flavonoid extract from Ampelopsis grossedentata leaves. We then evaluated its antioxidant and antiproliferative activities. A NADES consisting of choline chloride and glucose at a molar ratio of 4:1 with 20% water was determined to be the most suitable solvent. The optimal extraction conditions were: a liquid-to-solid ratio of 30 mL/g, an ultrasonication power of 490 W, and an ultrasonication time of 6.5 min. The actual flavonoid yield was 83.93%, which was close to the predicted yield. Further, 86.75% of the flavonoids were recovered by adding the same volume of phosphate buffer saline (100 mM, pH of 7.0) to the extract solution. Although the chemical antioxidant activities of the flavonoid extract were slightly inferior to those of dihydromyricetin, the flavonoid extract could still effectively inhibit the proliferation of human breast MDA-MB-231 cells by inducing cell apoptosis, retarding the cell cycle, changing the mitochondrial membrane potential and scavenging intracellular reactive oxygen species (ROS). The obtained results can provide a reference in the development of plant-derived functional foods.

11.
Angew Chem Int Ed Engl ; 61(22): e202201913, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35289049

ABSTRACT

The electrochemical CO2 reduction (CO2 ER) to multi-carbon chemical feedstocks over Cu-based catalysts is of considerable attraction but suffers with the ambiguous nature of active sites, which hinder the rational design of catalysts and large-scale industrialization. This paper describes a large-scale simulation to obtain realistic CuZn nanoparticle models and the atom-level structure of active sites for C2+ products on CuZn catalysts in CO2 ER, combining neural network based global optimization and density functional theory calculations. Upon analyzing over 2000 surface sites through high throughput tests based on NN potential, two kinds of active sites are identified, balanced Cu-Zn sites and Zn-heavy Cu-Zn sites, both facilitating C-C coupling, which are verified by subsequent calculational and experimental investigations. This work provides a paradigm for the design of high-performance Cu-based catalysts and may offer a general strategy to identify accurately the atomic structures of active sites in complex catalytic systems.

12.
J Nematol ; 50(4): 495-506, 2018.
Article in English | MEDLINE | ID: mdl-31094152

ABSTRACT

Beneficial nematodes are used as biological control agents. Low-cost mass production of entomopathogenic nematodes (EPNs) is an important prerequisite toward their successful commercialization. EPNs can be grown via in vivo methods or in sold or liquid fermentation. For solid and liquid approaches, media optimization is paramount to maximizing EPN yield and quality. In solid media, the authors investigated the effects of incorporating pulverized insect powder from larvae of three insects (Galleria mellonella, Tenebrio molitor, and Lucillia sericata) at three dose levels (1, 3, and 5%). The impact of insect powder was assessed on infective juvenile (IJ) yield in solid media. Additionally, IJs produced in solid culture were subsequently assessed for virulence, and progeny production in a target insect, Spodoptera litura. The dose level of larval powder had a significant effect on IJ yield in both trials, whereas insect type had significant effect on IJ yield in trial 1 but not in trial 2. The maximum solid culture yield was observed in T. molitor powder at the highest dose in both trials. Moreover, the time-to-death in S. litura was substantially shortened in trial 1 and in trial 2 when IJs from the T. molitor powder treatment were applied. There was no significant effect of combining two insect powders relative to addition of powder from a single insect species. These findings indicate that addition of insect powder to solid media leads to high mass production yields, and the fitness of the IJs produced (e.g., in virulence and reproductive capacity) can be enhanced as well.Beneficial nematodes are used as biological control agents. Low-cost mass production of entomopathogenic nematodes (EPNs) is an important prerequisite toward their successful commercialization. EPNs can be grown via in vivo methods or in sold or liquid fermentation. For solid and liquid approaches, media optimization is paramount to maximizing EPN yield and quality. In solid media, the authors investigated the effects of incorporating pulverized insect powder from larvae of three insects (Galleria mellonella, Tenebrio molitor, and Lucillia sericata) at three dose levels (1, 3, and 5%). The impact of insect powder was assessed on infective juvenile (IJ) yield in solid media. Additionally, IJs produced in solid culture were subsequently assessed for virulence, and progeny production in a target insect, Spodoptera litura. The dose level of larval powder had a significant effect on IJ yield in both trials, whereas insect type had significant effect on IJ yield in trial 1 but not in trial 2. The maximum solid culture yield was observed in T. molitor powder at the highest dose in both trials. Moreover, the time-to-death in S. litura was substantially shortened in trial 1 and in trial 2 when IJs from the T. molitor powder treatment were applied. There was no significant effect of combining two insect powders relative to addition of powder from a single insect species. These findings indicate that addition of insect powder to solid media leads to high mass production yields, and the fitness of the IJs produced (e.g., in virulence and reproductive capacity) can be enhanced as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...