Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
2.
Am J Cancer Res ; 12(8): 3679-3692, 2022.
Article in English | MEDLINE | ID: mdl-36119846

ABSTRACT

Epigenomic-wide DNA methylation profiling holds the potential to reflect both electronic cigarette exposure-associated risks and individual poor health outcomes. However, a systemic study in animals or humans is still lacking. Using the Infinium Mouse Methylation BeadChip, we examined the DNA methylation status of white blood cells in male ApoE-/- mice after 14 weeks of electronic cigarette exposure with the InExpose system (2 hr/day, 5 days/week, 50% PG and 50% VG) with low (6 mg/ml) and high (36 mg/ml) nicotine concentrations. Our results indicate that electronic cigarette aerosol inhalation induces significant alteration of 8,985 CpGs in a dose-dependent manner (FDR<0.05); 7,389 (82.2%) of the CpG sites are annotated with known genes. Among the top 6 significant CpG sites (P-value<1e-8), 4 CpG sites are located in the known genes, and most (3/5) of these genes have been related to cigarette smoking. The other two CpGs are close to/associated with the Phc2 gene that was recently linked to smoking in a transcriptome-wide associations study. Furthermore, the gene set enrichment analysis highlights the activation of MAPK and 4 cardiomyocyte/cardiomyopathy-related signaling pathways (including adrenergic signaling in cardiomyocytes and arrhythmogenic right ventricular cardiomyopathy) following repeated electronic cigarette use. The MAPK pathway activation correlates well with our finding of increased cytokine mRNA expression after electronic cigarette exposure in the same batch of mice. Interestingly, two pathways related to mitochondrial activities, namely mitochondrial gene expression and mitochondrial translation, are also activated after electronic cigarette exposure. Elucidating the relationship between these pathways and the increased circulating mitochondrial DNA observed here will provide further insight into the cell-damaging effects of prolonged inhalation of e-cigarette aerosols.

3.
J Cell Biol ; 221(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35695893

ABSTRACT

Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.


Subject(s)
Endothelial Cells , Kruppel-Like Transcription Factors , Mitochondria , Stress, Mechanical , Atherosclerosis/pathology , CRISPR-Cas Systems , Calcium Signaling , Endothelial Cells/metabolism , Humans , Inflammation , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MAP Kinase Kinase 5 , MAP Kinase Kinase Kinase 2 , MAP Kinase Kinase Kinase 3 , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , Reactive Oxygen Species
4.
J Phys Condens Matter ; 34(25)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35366657

ABSTRACT

In this paper, we report the synthesis of high-quality Ta2Ni3Se8crystals free of noble or toxic elements and the fabrication and testing of photodetectors on the wire samples. A broadband photoresponse from 405 nm to 1550 nm is observed, along with performance parameters including relatively high photoresponsivity (10 mA W-1) and specific detectivity (3.5 × 107Jones) and comparably short response time (τrise= 433 ms,τdecay= 372 ms) for 1064 nm, 0.5 V bias and 1.352 mW mm-2. Through extensive measurement and analysis, it is determined that the dominant mechanism for photocurrent generation is the photo-bolometric effect, which is believed to be responsible for the very broad spectral detection capability. More importantly, the pronounced response to 1310 nm and 1550 nm wavelengths manifests its promising applications in optical communications. Considering the quasi-one-dimensional structure with layered texture, the potential to build nanodevices on Ta2Ni3Se8makes it even more important in future electronic and optoelectronic applications.

5.
J Phys Condens Matter ; 34(16)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35105834

ABSTRACT

Schottky junctions, formed by high work function metals and semiconductors, are important devices in electronics and optoelectronics. The metal deposition in traditional Schottky interfaces usually damages the semiconductor surface and causes defect states, which reduces the Schottky barrier height and device performance. This can be avoided in the atomically smooth interface formed by two-dimensional (2D) metals and semiconductors. For better interface tailoring engineering, it is particularly important to understand various interface effects in such 2D Schottky devices under critical or boundary conditions. Here we report the fabrication and testing of three types of MoS2devices, i.e., using PtTe2, Cr and Au as contact materials. While the Cr/MoS2contact is an ohmic contact, the other two are Schottky contacts. The van-der-Waals interface of PtTe2-MoS2results in a well-defined OFF state and a significant rectification ratio of 104. This parameter, together with an ideality factor 2.1, outperforms the device based on evaporated Au. Moreover, a device in the intermediate condition is also presented. An abrupt increase in the reverse current is observed and understood based on the enhanced tunneling current. Our work manifests the essential role of doping concentration and provides another example for 2D Schottky interface design.

6.
Transfusion ; 62(3): 570-583, 2022 03.
Article in English | MEDLINE | ID: mdl-35128658

ABSTRACT

BACKGROUND: COVID-19 convalescent plasma (CCP), from donors recovered from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the limited therapeutic options currently available for the treatment of critically ill patients with COVID-19. There is growing evidence that CCP may reduce viral loads and disease severity; and reduce mortality. However, concerns about the risk of transfusion-transmitted infections (TTI) and other complications associated with transfusion of plasma, remain. Amotosalen/UVA pathogen reduction treatment (A/UVA-PRT) of plasma offers a mitigation of TTI risk, and when combined with pooling has the potential to increase the diversity of the polyclonal SARS-CoV-2 neutralizing antibodies. STUDY DESIGN AND METHODS: This study assessed the impact of A/UVA-PRT on SARS-CoV-2 antibodies in 42 CCP using multiple complimentary assays including antigen binding, neutralizing, and epitope microarrays. Other mediators of CCP efficacy were also assessed. RESULTS: A/UVA-PRT did not negatively impact antibodies to SARS-CoV-2 and other viral epitopes, had no impact on neutralizing activity or other potential mediators of CCP efficacy. Finally, immune cross-reactivity with other coronavirus antigens was observed raising the potential for neutralizing activity against other emergent coronaviruses. CONCLUSION: The findings of this study support the selection of effective CCP combined with the use of A/UVA-PRT in the production of CCP for patients with COVID-19.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Furocoumarins , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911761

ABSTRACT

Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFß-signaling both in vitro and in vivo. Endothelial-specific TGFßR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFßR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.


Subject(s)
Hypertension, Pulmonary/pathology , MAP Kinase Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 3/metabolism , Transforming Growth Factor beta/metabolism , Vascular Remodeling/physiology , Animals , Gene Deletion , Gene Expression Regulation/drug effects , Genotype , Hindlimb/blood supply , Human Umbilical Vein Endothelial Cells , Humans , Hypertension, Pulmonary/metabolism , Ischemia , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 3/genetics , Mice , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Selective Estrogen Receptor Modulators/toxicity , Signal Transduction , Tamoxifen/toxicity , Transforming Growth Factor beta/genetics
8.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34504019

ABSTRACT

Endothelial cell (EC) sensing of wall fluid shear stress (FSS) from blood flow governs vessel remodeling to maintain FSS at a specific magnitude or set point in healthy vessels. Low FSS triggers inward remodeling to restore normal FSS but the regulatory mechanisms are unknown. In this paper, we describe the signaling network that governs inward artery remodeling. FSS induces Smad2/3 phosphorylation through the type I transforming growth factor (TGF)-ß family receptor Alk5 and the transmembrane protein Neuropilin-1, which together increase sensitivity to circulating bone morphogenetic protein (BMP)-9. Smad2/3 nuclear translocation and target gene expression but not phosphorylation are maximal at low FSS and suppressed at physiological high shear. Reducing flow by carotid ligation in rodents increases Smad2/3 nuclear localization, while the resultant inward remodeling is blocked by the EC-specific deletion of Alk5. The flow-activated MEKK3/Klf2 pathway mediates the suppression of Smad2/3 nuclear translocation at high FSS, mainly through the cyclin-dependent kinase (CDK)-2-dependent phosphosphorylation of the Smad linker region. Thus, low FSS activates Smad2/3, while higher FSS blocks nuclear translocation to induce inward artery remodeling, specifically at low FSS. These results are likely relevant to inward remodeling in atherosclerotic vessels, in which Smad2/3 is activated through TGF-ß signaling.


Subject(s)
Carotid Arteries/physiology , Carotid Artery Diseases/prevention & control , Endothelial Cells/physiology , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Stress, Mechanical , Vascular Remodeling , Animals , Carotid Arteries/cytology , Carotid Artery Diseases/metabolism , Carotid Artery Diseases/pathology , Endothelial Cells/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Signal Transduction , Smad2 Protein/genetics , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
9.
J Phys Condens Matter ; 33(39)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34252886

ABSTRACT

Two-dimensional (2D) materials attached with flexible substrates enable possibilities to apply their superior properties to the rapidly increasing demand for foldable displays and wearable biosensors in the internet-of-things technology. However, previous two-step strategy to construct the flexible devices, namely first obtaining 2D materials elsewhere and then transferring them onto flexible substrates, can cause huge problems, including irreversibly undermining the device performance and limiting the material size. Here we propose a new one-step strategy (other than the liquid phase processing and low temperature synthesis methods), namely directly depositing appropriate 2D materials onto flexible substrates, which involves no transferring and can maintain the crystal quality and properties to the greatest extent. More importantly, this strategy in principle has no limit in the film size, hence removing a main obstacle for the practical use of flexible films, such as complex logic operations and large-area optoelectronic applications. Using this strategy, a centimeter-scale SnSe2film is directly grown on polydimethylsiloxane, which is characterized as a uniform, out-of-plane oriented and semiconducting film that is robust to deformations. Based on the film, a flexible photodetector is fabricated and distinct photoresponse to a broad spectrum of light (405-830 nm) is observed, with remarkable technical parameters.

10.
J Appl Lab Med ; 6(5): 1305-1315, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33930144

ABSTRACT

BACKGROUND: COVID-19, the disease caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can present with symptoms ranging from none to severe. Thrombotic events occur in a significant number of patients with COVID-19, especially in critically ill patients. This apparent novel form of coagulopathy is termed COVID-19-associated coagulopathy (CAC), and endothelial derived von Willebrand factor (vWF) may play an important role in its pathogenesis. CONTENT: vWF is a multimeric glycoprotein molecule that is involved in inflammation, primary and secondary hemostasis. Studies have shown that patients with COVID-19 have significantly elevated levels of vWF antigen and activity, likely contributing to an increased risk of thrombosis seen in CAC. The high levels of both vWF antigen and activity have been clinically correlated with worse outcomes. Furthermore, the severity of a COVID-19 infection appears to reduce molecules that regulate vWF level and activity such as ADAMTS-13 and high-density lipoproteins (HDL). Finally, studies have suggested that patients with group O blood (a blood group with lower baseline levels of vWF) have a lower risk of infection and disease severity compared to other ABO blood groups; however, more studies are needed to elucidate the role of vWF. SUMMARY: CAC is a significant contributor to morbidity and mortality. Endothelial dysfunction with the release of prothrombotic factors, such as vWF, needs further examination as a possible important component in the pathogenesis of CAC.


Subject(s)
COVID-19 , Thrombosis , von Willebrand Factor , Humans , SARS-CoV-2 , Severity of Illness Index
11.
Physiol Rep ; 9(3): e14729, 2021 02.
Article in English | MEDLINE | ID: mdl-33527749

ABSTRACT

Fasting plasma lactate concentrations are elevated in individuals with metabolic disease. The aim of this study was to determine if the variance in fasting lactate concentrations were associated with factors linked with cardiometabolic health even in a young, lean cohort. Young (age 22 ± 0.5; N = 30) lean (BMI (22.4 ± 0.4 kg/m2 ) women were assessed for waist-to-hip ratio, aerobic capacity (VO2 peak), skeletal muscle oxidative capacity (near infrared spectroscopy; fat oxidation from muscle biopsies), and fasting glucose and insulin (HOMA-IR). Subjects had a mean fasting lactate of 0.9 ± 0.1 mmol/L. The rate of deoxygenation of hemoglobin/myoglobin (R2  = .23, p = .03) in resting muscle and skeletal muscle homogenate fatty acid oxidation (R2  = .72, p = .004) were inversely associated with fasting lactate. Likewise, cardiorespiratory fitness (time to exhaustion during the VO2 peak test) was inversely associated with lactate (R2  = .20, p = .05). Lactate concentration was inversely correlated with HDL:LDL (R2  = .57, p = .02) and positively correlated with the waist to hip ratio (R2  = .52, p = .02). Plasma lactate was associated with various indices of cardiometabolic health. Thus, early determination of fasting lactate concentration could become a common biomarker used for identifying individuals at early risk for metabolic diseases.


Subject(s)
Cardiorespiratory Fitness , Energy Metabolism , Lactic Acid/blood , Metabolic Diseases/diagnosis , Mitochondria, Muscle/metabolism , Muscle Contraction , Quadriceps Muscle/metabolism , Biomarkers/blood , Cardiometabolic Risk Factors , Female , Health Status , Healthy Volunteers , Humans , Metabolic Diseases/blood , Metabolic Diseases/physiopathology , Predictive Value of Tests , Risk Assessment , Young Adult
12.
Cell Stem Cell ; 26(4): 542-557.e11, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243809

ABSTRACT

The etiology of aortic aneurysms is poorly understood, but it is associated with atherosclerosis, hypercholesterolemia, and abnormal transforming growth factor ß (TGF-ß) signaling in smooth muscle. Here, we investigated the interactions between these different factors in aortic aneurysm development and identified a key role for smooth muscle cell (SMC) reprogramming into a mesenchymal stem cell (MSC)-like state. SMC-specific ablation of TGF-ß signaling in Apoe-/- mice on a hypercholesterolemic diet led to development of aortic aneurysms exhibiting all the features of human disease, which was associated with transdifferentiation of a subset of contractile SMCs into an MSC-like intermediate state that generated osteoblasts, chondrocytes, adipocytes, and macrophages. This combination of medial SMC loss with marked increases in non-SMC aortic cell mass induced exuberant growth and dilation of the aorta, calcification and ossification of the aortic wall, and inflammation, resulting in aneurysm development.


Subject(s)
Aortic Aneurysm , Muscle, Smooth, Vascular , Animals , Aorta , Cellular Reprogramming , Mice , Myocytes, Smooth Muscle , Transforming Growth Factor beta
13.
Cells ; 9(1)2019 12 21.
Article in English | MEDLINE | ID: mdl-31877781

ABSTRACT

Despite the clinical importance of arteriogenesis, this biological process is poorly understood. ERK1 and ERK2 are key components of a major intracellular signaling pathway activated by vascular endothelial growth (VEGF) and FGF2, growth factors critical to arteriogenesis. To investigate the specific role of each ERK isoform in arteriogenesis, we used mice with a global Erk1 knockout as well as Erk1 and Erk2 floxed mice to delete Erk1 or Erk2 in endothelial cells, macrophages, and smooth muscle cells. We found that ERK1 controls macrophage infiltration following an ischemic event. Loss of ERK1 in endothelial cells and macrophages induced an excessive macrophage infiltration leading to an increased but poorly functional arteriogenesis. Loss of ERK2 in endothelial cells leads to a decreased arteriogenesis due to decreased endothelial cell proliferation and a reduced eNOS expression. These findings show for the first time that isoform-specific roles of ERK1 and ERK2 in the control of arteriogenesis.


Subject(s)
Arteries/enzymology , Arteries/growth & development , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Animals , Cell Proliferation/physiology , Cells, Cultured , Female , Human Umbilical Vein Endothelial Cells , Humans , Isoenzymes/metabolism , MAP Kinase Signaling System , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Neovascularization, Physiologic , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
14.
Nat Commun ; 10(1): 3679, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31417083

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Circ Cardiovasc Imaging ; 12(7): e009063, 2019 07.
Article in English | MEDLINE | ID: mdl-31296047

ABSTRACT

BACKGROUND: We propose micro single-photon emission computed tomography/computed tomography imaging of the hNIS (human sodium/iodide symporter) to noninvasively quantify adeno-associated virus 9 (AAV9)-mediated gene expression in a murine model of peripheral artery disease. METHODS: AAV9-hNIS (2×1011 viral genome particles) was injected into nonischemic or ischemic gastrocnemius muscles of C57Bl/6J mice following unilateral hindlimb ischemia ± the α-sialidase NA (neuraminidase). Control nonischemic limbs were injected with phosphate buffered saline or remained noninjected. Twelve mice underwent micro single-photon emission computed tomography/computed tomography imaging after serial injection of pertechnetate (99mTcO4-), a NIS substrate, up to 28 days after AAV9-hNIS injection. Twenty four animals were euthanized at selected times over 1 month for ex vivo validation. Forty-two animals were imaged with 99mTcO4- ± the selective NIS inhibitor perchlorate on day 10, to ascertain specificity of radiotracer uptake. Tissue was harvested for ex vivo validation. A modified version of the U-Net deep learning algorithm was used for image quantification. RESULTS: As quantitated by standardized uptake value, there was a gradual temporal increase in 99mTcO4- uptake in muscles treated with AAV9-hNIS. Hindlimb ischemia, NA, and hindlimb ischemia plus NA increased the magnitude of 99mTcO4- uptake by 4- to 5-fold compared with nonischemic muscle treated with only AAV9-hNIS. Perchlorate treatment significantly reduced 99mTcO4- uptake in AAV9-hNIS-treated muscles, demonstrating uptake specificity. The imaging results correlated well with ex vivo well counting (r2=0.9375; P<0.0001) and immunoblot analysis of NIS protein (r2=0.65; P<0.0001). CONCLUSIONS: Micro single-photon emission computed tomography/computed tomography imaging of hNIS-mediated 99mTcO4- uptake allows for accurate in vivo quantification of AAV9-driven gene expression, which increases under ischemic conditions or neuraminidase desialylation in skeletal muscle.


Subject(s)
Dependovirus/genetics , Gene Expression Regulation/physiology , Muscle, Skeletal/metabolism , Neuraminidase/metabolism , Peripheral Arterial Disease/metabolism , Single Photon Emission Computed Tomography Computed Tomography/methods , Symporters/pharmacokinetics , Animals , Disease Models, Animal , Hindlimb/blood supply , Ischemia , Mice , Mice, Inbred C57BL , Muscle, Skeletal/diagnostic imaging , Saline Solution/administration & dosage
17.
Nat Commun ; 10(1): 2124, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31064993

ABSTRACT

The original version of this Article contained errors in Figures 1, 3 and 4. In panels b and d of Figure 1, the labels 'Sdc4-/-' were inadvertently replaced by 'Sdc4+/+'. In panels c and d of Figure 3, the labels 'Sdc4-/-' were replaced by 'Sdc2-/-'. In panel f of Figure 3, the labels 'FGF2' were replaced by 'VEGFA165'. In panel e of Figure 6, a 'Sdc2-/-' label was inadvertently included. This has now been corrected in the PDF and HTML versions of the Article.

18.
Nat Commun ; 10(1): 1562, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952866

ABSTRACT

The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.


Subject(s)
Neovascularization, Physiologic/genetics , Syndecan-2/physiology , Vascular Endothelial Growth Factor A/physiology , Animals , Mice , Protein Domains , Retina/growth & development , Sequence Analysis, Protein , Syndecan-2/genetics , Syndecan-2/metabolism , Syndecan-4/genetics , Syndecan-4/metabolism , Syndecan-4/physiology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/physiology
19.
Nature ; 568(7752): 336-343, 2019 04.
Article in English | MEDLINE | ID: mdl-30996318

ABSTRACT

The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.


Subject(s)
Autopsy , Brain/blood supply , Brain/cytology , Cerebrovascular Circulation , Microcirculation , Swine , Animals , Brain/metabolism , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Caspase 3/metabolism , Cell Survival , Cerebral Arteries/physiology , Disease Models, Animal , Hypoxia, Brain/metabolism , Hypoxia, Brain/pathology , Inflammation/metabolism , Inflammation/pathology , Neuroglia/cytology , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Perfusion , Reperfusion Injury/prevention & control , Swine/blood , Synapses/metabolism , Synapses/pathology , Time Factors , Vasodilation
20.
Theranostics ; 9(5): 1474-1489, 2019.
Article in English | MEDLINE | ID: mdl-30867844

ABSTRACT

Coronary microvascular disease (MVD) remains a major clinical problem due to limited mechanistic understanding and a challenging diagnosis. In the present study we evaluated the utility of targeted imaging of active factor XIII (FXIII) for detection of coronary MVD associated with thrombus. We hypothesized that a high specificity and sensitivity FXIII targeted radiolabeled probe can serve as a biomarker for cross-linked thrombi in the microvasculature, and thus an indicator for underlying coronary MVD. To evaluate this approach, a coronary MVD model was established for local induction of singlet oxygen and reactive oxygen species (ROS) via a photochemical reaction (PCR). Methods: PCR was used to induce endothelial injury and microthrombi via focal over-production of ROS only in the coronary microvasculature. Oxidative stress was initially evaluated in primary coronary endothelial cells to optimize parameters of PCR, which were then translated to in vivo experiments. To develop the coronary MVD model, 64 mice were assigned to one of four groups after thoracotomy: 1) sham control; 2) rose bengal; 3) green light; or 4) their combination. Following interventions, the mice underwent transmission electron microscopy, fluorescent myocardial perfusion, coronary angiography, and immunohistochemical staining. Echocardiography (n = 12) and gene expression (n = 10) studies were also performed after MVD induction to monitor serial changes in cardiac function and explore possible mechanisms. To diagnose early onset MVD, FXIII radioactivity was assessed in 104 mice using ex vivo gamma well counting (GWC) and in 14 mice using in vivo serial single photon emission computed tomography / computed tomography (SPECT/CT) imaging of a FXIII targeted technetium-labeled probe (99mTc-NC100668). Results:In vitro experiments demonstrated that photosensitizer concentration and light illumination time were critical parameters for PCR. In vivo experiments demonstrated manifestations of clinical MVD, including endothelial damage, a "no flow zone," arteriole rarefaction with patent epicardial coronary arteries, infiltration of inflammatory cells in the PCR-treated region, and preserved cardiac function. Gene expression also demonstrated a pro-thrombotic and impaired fibrinolytic status. In the early stages of MVD, enhanced FXIII activity was confirmed within the MVD region using GWC and in vivo SPECT/CT imaging. Conclusion: Our results demonstrate that molecular imaging of FXIII activity may allow for early detection of coronary MVD associated with thrombus, in a novel pre-clinical model.


Subject(s)
Coronary Disease/diagnosis , Factor XIII/analysis , Microvascular Angina/diagnosis , Molecular Imaging/methods , Animals , Disease Models, Animal , Early Diagnosis , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...