Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3295-3301, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041092

ABSTRACT

This study aims to reveal the effects of the herb pair Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma(AR-SMRR) on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) pathway and autophagy in the lung tissue of the rat model of acute lung injury(ALI). Fifty adult male SD rats were randomized into sham, model, autophagy inhibition(intraperitoneal injection of chloroquine at 10 mg·kg~(-1)), autophagy induction(intraperitoneal injection of rapamycin at 15 mg·kg~(-1)), and AR-SMRR(5 g·kg~(-1), gavage) groups. The rats in the sham group received intratracheal instillation of normal saline, and those in other groups received intratracheal instillation of lipopolysaccharide(LPS, 5 mg·kg~(-1)) for the modeling of ALI. Seven days before the operation, the rats in the sham and model groups were administrated with normal saline, and those in other groups with corresponding drugs. Specimens were collected 24 h after modeling. The pathological changes of the lung tissue were observed under a light microscope. The lung wet/dry weight ratio and the lactate dehydrogenase(LDH) activity and total protein concentration in the bronchoalveolar lavage fluid(BALF) were measured. Western blot was employed to measure the protein levels of microtubule-associated protein 1-light chain 3(LC3), beclin-1, p62, PI3K, Akt, and mTOR. Compared with the sham group, the model group showed increased histopathological score of the lung tissue, lung wet/dry weight ratio, and LDH activity and protein concentration in BALF. Autophagy inhibition further increased these indicators compared with the model group, while autophagy induction and AR-SMRR lowered the levels. In addition, AR-SMRR up-regulated the protein levels of LC3-Ⅱ and beclin-1, down-regulated the expression of p62, and inhibited the expression of p-PI3K, p-Akt, and p-mTOR in the lung tissue of ALI rats. The findings suggest that AR-SMRR can alleviate the lung injury and edema in the rat model of ALI induced by LPS by enhancing autophagy via down-regulating PI3K/Akt/mTOR signaling pathway.


Subject(s)
Acute Lung Injury , Autophagy , Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Male , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Rats , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Salvia miltiorrhiza/chemistry , Astragalus propinquus/chemistry , Rhizome/chemistry , Lung/drug effects , Lung/metabolism , Lung/pathology , Humans
2.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282024

ABSTRACT

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Subject(s)
Axonal Transport , NAD , Nicotinamide-Nucleotide Adenylyltransferase , Animals , Mice , Adenosine Triphosphate/metabolism , Armadillo Domain Proteins/metabolism , Axons/metabolism , Cytoskeletal Proteins/metabolism , Glycolysis , Homeostasis , NAD/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism
3.
Huan Jing Ke Xue ; 44(8): 4599-4610, 2023 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-37694653

ABSTRACT

A 120-day in situ remediation of oil-contaminated soil was carried out by using highly efficient oil-degrading bacteria. The effects of bio-enhanced remediation and changes in soil physicochemical properties and enzyme activities were investigated. Combined with metagenomic sequencing and bioinformatics analysis, the strengthening mechanism was revealed. The results showed that compared with the blank control group (Ctrl), the degradation rate of total petroleum hydrocarbons in the bioremediation group (Exp-BT) was significantly increased, reaching 81.23%. During enhanced bioremediation by highly efficient oil-degrading bacteria, the pH of the soil was stable, the oxidation capacity of the system was improved, and the electrical conductivity was in the range suitable for agricultural activities. Lipase and dehydrogenase maintained high activity during repair. In addition, the analysis of the initial contaminated soil (B0), the highly efficient oil-degrading bacteria obtained from domestication (GZ), and the soil samples after bioremediation (BT) in the obtained samples showed that, at the phylum level, the total proportion of Proteobacteria and Actinobacteria increased by 17.1%. At the genus level, the abundance of Nocardioides, Achromobacter, Gordonia, and Rhodococcus increased significantly. The species and function contribution analysis of COG and KEGG proved that the above bacterial genera had important contributions to the degradation of petroleum hydrocarbons. A high abundance of petroleum hydrocarbon-related metabolic enzymes and five petroleum hydrocarbon-related degradation genes was found in the soil after remediation:alkM, tamA, rubB, ladA, and alkB. The analysis showed that the introduction of the exogenous petroleum hydrocarbon-degrading bacteria group enhanced the metabolic activity of microorganism-related enzymes and the expression of corresponding functional genes.


Subject(s)
Actinobacteria , Petroleum , Bacteria/genetics , Proteobacteria , Agriculture
4.
Res Sq ; 2023 May 19.
Article in English | MEDLINE | ID: mdl-37292715

ABSTRACT

Background: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. Methods: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. Results: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. Conclusion: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.

5.
Medicine (Baltimore) ; 102(19): e33744, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37171308

ABSTRACT

BACKGROUND: TBL1XR1, also known as IRA1 or TBLR1, encodes a protein that is localized in the nucleus and is expressed in most tissues. TBL1XR1 binds to histones H2B and H4 in vitro and functions in nuclear receptor-mediated transcription. TBL1XR1 is also involved in the regulation of the Wnt-ß-catenin signaling pathway. Mutations in the TBL1XR1 gene impair the Wnt-ß-catenin signaling pathway's ability to recruit Wnt-responsive element chromatin, affecting brain development. Mutations in this gene cause various clinical phenotypes, including Pierpont syndrome, autism spectrum disorder, speech and motor delays, mental retardation, facial dysmorphism, hypotonia, microcephaly, and hearing impairment. CASE SUMMARY: A 5-month-old female child was admitted with "episodic limb tremors for more than 1 month." At the time of admission, the child had recurrent episodes of limb tremors with motor retardation and a partially atypical and hypsarrhythmic video electroencephalogram. It was determined that a heterozygous mutation in the TBL1XR1 gene caused West syndrome and global developmental delay. Recurrent episodes persisted for 6 months following oral treatment with topiramate; the addition of oral treatment with vigabatrin did not show any significant improvement, and the disease continued to recur. The child continued to have recurrent episodes of limb tremors at follow-up until 1 year and 3 months of age. Additionally, she developed poor eye contact and a poor response to name-calling. CONCLUSION: We report the case of a child with West syndrome and a global developmental delay caused by a heterozygous mutation in the TBL1XR1 gene. This study adds to our understanding of the clinical phenotype of TBL1XR1 mutations and provides a realistic and reliable basis for clinicians.


Subject(s)
Autism Spectrum Disorder , Spasms, Infantile , Humans , Child , Female , beta Catenin/genetics , Tremor , Mutation , Repressor Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics
6.
Front Cardiovasc Med ; 9: 924525, 2022.
Article in English | MEDLINE | ID: mdl-36440027

ABSTRACT

Introduction: Many observational studies imply elevated blood pressure (BP) as a leading risk factor for incident myocardial infarction (MI), but whether this relationship is causal remains unknown. In this study, we used bidirectional Mendelian randomization (MR) to investigate the potential causal association of BP levels with the risk of MI. Methods: Genetic variants associated with BP and MI traits were retrieved from the International Consortium of Blood Pressure (N = 7,57,601) and UKB (N = 3,61,194), obtaining 1,26,40,541 variants. We used two-sample MR (TSMR) analyses to examine the potential bidirectional causal association of systolic BP (SBP), diastolic BP (DBP) and pulse pressure (PP) with MI. Results: The forward MR analysis identified a potentially causal association between MI and BP except PP[odds ratio (OR) SBP: 1.0008, P = 1.911 × 10-22; ORDBP: 1.0014, P = 1.788 × 10-28;odds ratio (OR)pp: 1.0092, P = 0.179]. However, the reverse analysis suggested no causal relation (betaSBP: 5.469, P = 0.763; betaDBP: 3.624, P = 0.588; betaPP: -0.074, P = 0.912). These findings were robust in sensitivity analyses such as the MR-Egger method, the maximum likelihood method and the MR pleiotropy residual sum and outlier test (MR-PRESSO). No horizontal pleiotropy (p = 0.869 for SBP, p = 0.109 for DBP and p = 0.978 for PP in the forward results and p = 0.168 for SBP, P = 0.892 for DBP and p = 0.989 for PP in the reverse results) was observed. Conclusions: Elevated SBP or DBP levels increase the risk of MI, but there is no causal relationship between MI and changes in BP including PP. Independent of other risk factors, optimal BP control might represent an important therapeutic target for MI prevention in the general population.

7.
Sci Rep ; 12(1): 8018, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577840

ABSTRACT

The genus Bambusa belongs to the subtribe Bambusinae and the subfamily Bambusoideae. The subgenera of Bambusa has not been satisfactorily circumscribed, and this remains a major taxonomic issue. Simultaneously, genera such as Dendrocalamus and Gigantochloa have not been confidently assigned to Bambusa. Here, the phylogenetic relationships among subgenera were investigated using five chloroplast DNA markers (rpl32-trnL, rpl16, matK, rbcL, and trnH-psbA) for a sample of 50 ingroup and 16 outgroup species. A total of 186 key morphological descriptors were studied for the 50 ingroup species. The results indicated that five chloroplast DNA markers were possible to distinguish Bambusa species from other species and divide them into several clusters. Phylogenetic analyses conducted using morphological descriptors and a combined marker (rpl32-trnL+rpl16) revealed three and five distinct lineages, respectively, among the currently recognized Bambusa species. The branching pattern of the dendrogram was not completely consistent with the classical taxonomic classification of Bambusa. In addition, not all varieties and cultivars were clustered with McClure classifications. As the maximum parsimony topology and morphological analyses were inconsistent, some clustering results overlapped. Overall, the results obtained here do not support the current classification of the Bambusa subgenera.


Subject(s)
Bambusa , Bambusa/genetics , Chloroplasts/genetics , DNA Barcoding, Taxonomic/methods , DNA, Chloroplast/genetics , DNA, Plant/genetics , Phylogeny , Sequence Analysis, DNA
8.
BMC Med Genomics ; 15(1): 43, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246132

ABSTRACT

BACKGROUND: The application of long-read sequencing using the Oxford Nanopore Technologies (ONT) MinION sequencer is getting more diverse in the medical field. Having a high sequencing error of ONT and limited throughput from a single MinION flowcell, however, limits its applicability for accurate variant detection. Medical exome sequencing (MES) targets clinically significant exon regions, allowing rapid and comprehensive screening of pathogenic variants. By applying MES with MinION sequencing, the technology can achieve a more uniform capture of the target regions, shorter turnaround time, and lower sequencing cost per sample. METHOD: We introduced a cost-effective optimized workflow, ECNano, comprising a wet-lab protocol and bioinformatics analysis, for accurate variant detection at 4800 clinically important genes and regions using a single MinION flowcell. The ECNano wet-lab protocol was optimized to perform long-read target enrichment and ONT library preparation to stably generate high-quality MES data with adequate coverage. The subsequent variant-calling workflow, Clair-ensemble, adopted a fast RNN-based variant caller, Clair, and was optimized for target enrichment data. To evaluate its performance and practicality, ECNano was tested on both reference DNA samples and patient samples. RESULTS: ECNano achieved deep on-target depth of coverage (DoC) at average > 100× and > 98% uniformity using one MinION flowcell. For accurate ONT variant calling, the generated reads sufficiently covered 98.9% of pathogenic positions listed in ClinVar, with 98.96% having at least 30× DoC. ECNano obtained an average read length of 1000 bp. The long reads of ECNano also covered the adjacent splice sites well, with 98.5% of positions having ≥ 30× DoC. Clair-ensemble achieved > 99% recall and accuracy for SNV calling. The whole workflow from wet-lab protocol to variant detection was completed within three days. CONCLUSION: We presented ECNano, an out-of-the-box workflow comprising (1) a wet-lab protocol for ONT target enrichment sequencing and (2) a downstream variant detection workflow, Clair-ensemble. The workflow is cost-effective, with a short turnaround time for high accuracy variant calling in 4800 clinically significant genes and regions using a single MinION flowcell. The long-read exon captured data has potential for further development, promoting the application of long-read sequencing in personalized disease treatment and risk prediction.


Subject(s)
High-Throughput Nucleotide Sequencing , Nanopores , Cost-Benefit Analysis , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/methods , Workflow
9.
World J Clin Cases ; 9(27): 8127-8134, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34621871

ABSTRACT

BACKGROUND: Acute coronary syndrome (ACS) encompasses a spectrum of cardiovascular emergencies arising from the obstruction of coronary artery blood flow and acute myocardial ischemia. Recent studies have revealed that thyroid function is closely related to ACS. However, only a few reports of thyrotoxicosis-induced ACS with severe atherosclerosis have been reported. CASE SUMMARY: A 33-year-old man, who had a history of hyperthyroidism without taking any antithyroid drugs and no history of coronary heart disease, experienced neck pain with occasional heart palpitations starting 3 mo prior that were aggravated after an activity. As the symptoms worsened at 21 d prior, he went to a hospital for treatment. The electrocardiogram examination showed a multilead ST segment elevation and pathological Q waves. Based on these findings and his symptoms, the patient was diagnosed with a suspected myocardial infarction and transferred to our hospital on July 2, 2020. He was diagnosed with a rare case of ACS due to coronary artery atherosclerosis in the anterior descending artery complicated by hyperthyroidism. A paclitaxel-coated drug balloon was used for treatment to avoid the use of metal stents, thus reducing the time of antiplatelet therapy and facilitating the continued treatment of hyperthyroidism. The 9-mo follow-up showed favorable results. CONCLUSION: This case highlights that atherosclerosis is a cause of ACS that cannot be ignored even in a patient with hyperthyroidism.

10.
J Food Sci ; 86(9): 4209-4222, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34392532

ABSTRACT

Red-fleshedapples are preferredbecause of their high content of phenolics and antioxidants in peel and pulp. Herein, we evaluated the mechanisms of apple peel polyphenolic extracts (APP) and apple flesh polyphenolic extracts (AFP) from the new red-fleshed apple in inhibiting cell proliferation and inducing apoptosis on human breast cancer MDA-MB-231 cells. The antiproliferative activities were determined by the CCK8 assay. The expression of proteins was determined using Western blot. We found that the content of polyphenols and flavonoids in APP was significantly higher than that in AFP, and 14 main phenolic compounds in APP and AFP were quantified using UPLC-MS/MS techniques. Besides, the significant inhibition effects of APP and AFP were achieved through Akt pathway by inducing apoptosis (significantly upregulating reactive oxygen species [ROS] levels, and downregulating expression of pAkt, pBad, Bcl-2, promoting Cytochrome c release, activating Cle-Caspase 9, and inducing expressions of Cle-Caspase 3 and Cle-PARP), and inducing G0/G1 cell cycle arrest (increased expressions of p-p53 and p21 and decreased expressions of PCNA and Cyclin D1). And the inhibition effect of APP was stronger than that of AFP. These results suggest that AFP and APP may be excellent sources of natural chemicals for treating triple-negative breast cancer MDA-MB-231 cells. PRACTICAL APPLICATION: The effects of antiproliferation of phenolic extracts from red-fleshed apple peels and flesh on human breast cancer MDA-MB-231 cells were evaluated. The data may clarify the functional parts of red-fleshed apple and provide some basis for scientific researchers and consumers to recognize and exploit red-fleshed apple.


Subject(s)
Fruit , G1 Phase Cell Cycle Checkpoints , Malus , Plant Extracts , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, Liquid , Female , Fruit/chemistry , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Malus/chemistry , Phenols/chemistry , Plant Extracts/pharmacology , Tandem Mass Spectrometry
11.
Front Oncol ; 11: 681736, 2021.
Article in English | MEDLINE | ID: mdl-34222000

ABSTRACT

The pathogenesis of papillary thyroid cancer (PTC), the most common type of thyroid cancer, is not yet fully understood. This limits the therapeutic options for approximately 7% of invasive PTC patients. The critical role of AUF1 in the progression of thyroid cancer was first reported in 2009, however, its molecular mechanism remained unclear. Our study used CRISPR/Cas 9 system to knockdown AUF1 in IHH4 and TPC1 cells. We noticed that the expression of TRIM58 and ZBTB2 were increased in the AUF1 knockdown IHH4 and TPC1 cells. When TRIM58 and ZBTB2 were inhibited by small hairpin RNAs (shRNAs) against TRIM58 (shTRIM58) and ZBTB2 (shZBTB2), respectively, the proliferation, migration, and invasion ability of the AUF1-knockdown IHH4 and TPC1 cells were increased. In addition, two ZBTB2 binding sites (-719~-709 and -677~-668) on TRIM58 promoter and two AUF1 binding sites (1250-1256 and 1258-1265) on ZBTB2 3'-UTR were identified. These results suggested that AUF1 affecting thyroid cancer cells via regulating the expression of ZBTB2 and TRIM58.

12.
J Cell Mol Med ; 25(10): 4814-4825, 2021 05.
Article in English | MEDLINE | ID: mdl-33792181

ABSTRACT

HYOU1 is upregulated in many kinds of cancer cells, and its high expression is associated with tumour invasiveness and poor prognosis. However, the role of HYOU1 in papillary thyroid cancer (PTC) development and progression remains to be elucidated. Here, we reported that HYOU1 was highly expressed in human PTC and associated with poor prognosis. HYOU1 silencing suppressed the proliferation, migration and invasion of PTC cells. Mechanistic analyses showed that HYOU1 silencing promoted oxidative phosphorylation while inhibited aerobic glycolysis via downregulating LDHB at the posttranscriptional level. We further confirmed that the 3'UTR of LDHB mRNA is the indirect target of HYOU1 silencing and HYOU1 silencing increased miR-375-3p levels. While LDHB overexpression significantly suppressed the inhibitory effects of HYOU1 silencing on aerobic glycolysis, proliferation, migration and invasion in PTC cells. Taken together, our findings suggest that HYOU1 promotes glycolysis and malignant progression in PTC cells via upregulating LDHB expression, providing a potential target for developing novel anticancer agents.


Subject(s)
Gene Expression Regulation, Neoplastic , Glycolysis , HSP70 Heat-Shock Proteins/metabolism , Lactate Dehydrogenases/metabolism , RNA Stability , RNA, Messenger/chemistry , Thyroid Neoplasms/pathology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Movement , Cell Proliferation , HSP70 Heat-Shock Proteins/genetics , Humans , Lactate Dehydrogenases/genetics , Neoplasm Invasiveness , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Tumor Cells, Cultured
13.
Clin Hemorheol Microcirc ; 77(1): 61-69, 2021.
Article in English | MEDLINE | ID: mdl-32924995

ABSTRACT

Tumor-induced osteomalacia (TIO) is a vanishingly rare paraneoplastic syndrome which is usually caused by phosphaturic mesenchymal tumors (PMTs). The conventional treatment for PMTs is total resection, and ultrasound-guided radiofrequency ablation (RFA) can also be used for the treatment of PMTs patients, especially for patients in whom complete resection may lead to serious complications. We report two cases with PMT who presented syndrome with progressive musculoskeletal complaints and performed ultrasound-guided biopsy and RFA. Ultrasound-guided RFA, which is a safe and effective minimally invasive treatment option, appears to be a valuable alternative to surgery for patients presenting with PMT. We are the first reported case of RFA guided by ultrasonography in the treatment of PMT.


Subject(s)
Catheter Ablation/methods , Image-Guided Biopsy/methods , Mesenchymoma/diagnostic imaging , Osteomalacia/diagnostic imaging , Paraneoplastic Syndromes/diagnostic imaging , Radiofrequency Ablation/methods , Ultrasonography/methods , Adult , Humans , Male , Treatment Outcome , Ultrasonography, Interventional/adverse effects
14.
Cell Death Dis ; 11(9): 813, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994394

ABSTRACT

Papillary thyroid cancer (PTC) is the most common endocrine tumor with an increasing incidence, has a strong propensity for neck lymph node metastasis. Limited treatment options are available for patients with advanced or recurrent metastatic disease, resulting in a poor prognosis. Tripartite motif protein 29 (TRIM29) is dysregulated in various cancer and functions as oncogene or tumor suppressor in discrete cancers. In this study, we found that both TRIM29 and fibronectin 1 (FN1) were upregulated with positive correlation in PTC tissues. Neither overexpression nor downregulation of TRIM29 altered the proliferation of PTC cells significantly. Overexpression of TRIM29 significantly promotes, while knockdown of TRIM29 significantly decreases migration and invasion by regulating FN1 expression in PTC cells. In terms of mechanism, we found that TRIM29 altered the stability of FN1 mRNA via regulation of miR-873-5p expression. The current study also demonstrated that long non-coding RNA (LncRNA) CYTOR suppressed maturation of miR-873-5p via interaction with premiR-873, and TRIM29 decreased miR-873-5p via upregulation of CYTOR. This study suggests that involvement of TRIM29 in migration and invasion in PTC cells may reveal potential metastatic mechanism of PTC and represent a novel therapeutic target and strategy.


Subject(s)
DNA-Binding Proteins/metabolism , Fibronectins/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Fibronectins/genetics , Humans , MicroRNAs/genetics , Neoplasm Invasiveness , Organelle Biogenesis , Prognosis , RNA, Long Noncoding/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Transcription Factors/genetics , Transfection , Tumor Microenvironment , Up-Regulation
15.
Cancer Cell Int ; 20: 366, 2020.
Article in English | MEDLINE | ID: mdl-32774160

ABSTRACT

BACKGROUND: Transgelin, an actin-binding protein, is associated with cytoskeleton remodeling. Findings from our previous studies demonstrated that transgelin was up-regulated in node-positive colorectal cancer (CRC) versus node-negative disease. Over-expression of TAGLN affected the expression of 256 downstream transcripts and increased the metastatic potential of colon cancer cells in vitro and in vivo. This study aims to explore the mechanisms through which transgelin participates in the metastasis of colon cancer cells. METHODS: Immunofluorescence and immunoblotting analysis were used to determine the cellular localization of endogenous and exogenous transgelin in colon cancer cells. Co-immunoprecipitation and subsequently high-performance liquid chromatography/tandem mass spectrometry were performed to identify the proteins that were potentially interacting with transgelin. The 256 downstream transcripts regulated by transgelin were analyzed with bioinformatics methods to discriminate the specific key genes and signaling pathways. The Gene-Cloud of Biotechnology Information (GCBI) tools were used to predict the potential transcription factors (TFs) for the key genes. The predicted TFs corresponded to the proteins identified to interact with transgelin. The interaction between transgelin and the TFs was verified by co-immunoprecipitation and immunofluorescence. RESULTS: Transgelin was found to localize in both the cytoplasm and nucleus of the colon cancer cells. Approximately 297 proteins were identified to interact with transgelin. The overexpression of TAGLN led to the differential expression of 184 downstream genes. Network topology analysis discriminated seven key genes, including CALM1, MYO1F, NCKIPSD, PLK4, RAC1, WAS and WIPF1, which are mostly involved in the Rho signaling pathway. Poly (ADP-ribose) polymerase-1 (PARP1) was predicted as the unique TF for the key genes and concurrently corresponded to the DNA-binding proteins potentially interacting with transgelin. The interaction between PARP1 and transgelin in human RKO colon cancer cells was further validated by immunoprecipitation and immunofluorescence assays. CONCLUSIONS: Our results suggest that transgelin binds to PARP1 and regulates the expression of downstream key genes, which are mainly involved in the Rho signaling pathway, and thus participates in the metastasis of colon cancer.

16.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118715, 2020 09.
Article in English | MEDLINE | ID: mdl-32275930

ABSTRACT

Papillary thyroid cancer (PTC), the most common thyroid malignancy, has a strong propensity for neck lymph node metastasis, which will increase the risk of local recurrence and decrease the survival in some high-risk groups. Hence, it is essential to set up a reliable biomarker to predict lymph node metastasis. BAG5 is a unique member of the BAG cochaperone family because it consists of more than one BAG domain, which acts as modulator of chaperone activity. In this study, we found that expression of BAG5 was significantly increased in PTC cells and tissues. Neither overexpression nor downregulation of BAG5 altered the proliferation of PTC cells. On the contrary, overexpression of BAG5 significantly promoted, while knockdown of BAG5 significantly decreased migration and invasion of PTC cells. Along with this, fibronectin 1 (FN1) was significantly increased and decreased in cells that overexpress or downregulate BAG5, respectively. Mechanistically, we found that BAG5 modulated FN1 expression at the translational level and promoted invasion via suppression of miR-144-3p, which targeted the 3' untranslational region (UTR) of FN1 transcript. This study suggests that BAG5 is an important regulator of migration and invasion in PTC cells and may represent a novel therapeutic target for intervening in PTC progression.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Fibronectins/genetics , Gene Expression Regulation, Neoplastic , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Ectopic Gene Expression , Gene Knockdown Techniques , Genes, Reporter , Humans , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , RNA Interference , Thyroid Cancer, Papillary/pathology , Transcription, Genetic
17.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165556, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31521821

ABSTRACT

Epithelial-mesenchymal transition (EMT) is considered to be one of the most important mechanisms for the progression of renal interstitial fibrosis (RIF). Recently the relationship between post-translational modifications and EMT has been reported. O-GlcNAcylation, one of the key post-translational modifications, was rarely mentioned about its role in EMT, especially in EMT during the process of RIF. The current study aimed to determine whether O-GlcNAcylation participates in the regulation of EMT during RIF. We proved that O-GlcNAcylation prompted the EMT of HK2 cells. Mass spectral analysis identified RAF1 to be one of the O-GlcNAcylated proteins. Moreover, O-GlcNAcylation of RAF1 stabilized RAF1 protein and prompted EMT of HK2 cells. In terms of mechanism, we verified that O-GlcNAcylation of RAF1 inhibited its ubiquitination and thus stabilized RAF1. The upregulation of RAF1 and O-GlcNAcylation products (O-GlcNAc) in vivo were also observed in unilateral ureteral obstruction (UUO) animal models. Collectively, our study indicated that O-GlcNAcylation suppressed the ubiquitination of RAF1, stabilized RAF1 and then modulated the EMT in HK2 cells. These results may give us several new targets for the treatment of RIF.


Subject(s)
Acylation/physiology , Fibrosis/metabolism , Kidney Diseases/metabolism , Proto-Oncogene Proteins c-raf/metabolism , Acetylglucosamine/metabolism , Animals , Cell Line , Disease Models, Animal , Epithelial-Mesenchymal Transition/physiology , Humans , Male , Protein Processing, Post-Translational/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Ubiquitination/physiology , Ureteral Obstruction/metabolism
18.
Int Immunopharmacol ; 78: 105790, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31813830

ABSTRACT

Acute lung injury (ALI) is a complex clinical syndrome with high morbidity and mortality rates. Autophagy is an adaptive process that plays a complex role in ALI. The aim of this study was to investigate the effects of autophagy on lipopolysaccharide (LPS)-induced lung injury by establishing a rat ALI model and to further explore the possible mechanisms involved. Rats were pretreated with the autophagy inhibitor 3-methyladenine (3-MA) or the autophagy activator rapamycin before they were challenged with the intratracheal instillation of LPS (5 mg/kg). The level of autophagy in the lung tissue was detected. Lung injury and vascular permeability were assessed. The role of the mechanistic target of rapamycin (mTOR)-mediated Unc-51-like kinase 1 (ULK1) and the class III PI3 kinase VPS34 in autophagy regulation was examined. LPS challenge induced autophagy and rapamycin pretreatment enhanced autophagy activity in LPS-induced ALI rats. LPS caused severe lung injury and high pulmonary vascular permeability, which could be alleviated by enhancing autophagy. In addition, the inhibition of mTOR upregulated the expression of ULK1 and VPS34 and thus increased LPS-induced autophagy. Autophagy plays a protective role in LPS-induced ALI, and enhancing autophagy via the inhibition of mTOR alleviates lung injury and pulmonary barrier function. Moreover, mTOR negatively mediates ULK1 and VPS34 to regulate LPS-induced autophagy in rats.


Subject(s)
Acute Lung Injury/immunology , Autophagy , TOR Serine-Threonine Kinases/immunology , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Autophagy-Related Protein-1 Homolog/immunology , Bronchoalveolar Lavage Fluid/immunology , Class III Phosphatidylinositol 3-Kinases/immunology , Interleukin-1beta/immunology , Lipopolysaccharides , Lung/immunology , Lung/pathology , Male , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/immunology
19.
Cereb Cortex ; 30(5): 3015-3029, 2020 05 14.
Article in English | MEDLINE | ID: mdl-31838488

ABSTRACT

Establishing a balance between excitation and inhibition is critical for brain functions. However, how inhibitory interneurons (INs) generated in the ventral telencephalon integrate with the excitatory neurons generated in the dorsal telencephalon remains elusive. Previous studies showed that INs migrating tangentially to enter the neocortex (NCx), remain in the migratory stream for days before invading the cortical plate during late corticogenesis. Here we show that in developing mouse cortices, INs in the piriform cortex (PCx; the major olfactory cortex) distribute differently from those in the NCx. We provide evidence that during development INs invade and mature earlier in PCx than in NCx, likely owing to the lack of CXCR4 expression in INs from PCx compared to those in NCx. We analyzed IN distribution patterns in Lhx2 cKO mice, where projection neurons in the lateral NCx are re-fated to generate an ectopic PCx (ePCx). The PCx-specific IN distribution patterns found in ePCx suggest that properties of PCx projection neurons regulate IN distribution. Collectively, our results show that the timing of IN invasion in the developing PCx fundamentally differs from what is known in the NCx. Further, our results suggest that projection neurons instruct the PCx-specific pattern of IN distribution.


Subject(s)
Interneurons/physiology , Neocortex/embryology , Neocortex/growth & development , Piriform Cortex/enzymology , Piriform Cortex/growth & development , Age Factors , Animals , Mice , Mice, Knockout , Mice, Transgenic , Neocortex/cytology , Neurogenesis/physiology , Piriform Cortex/cytology
20.
J Cell Mol Med ; 24(1): 562-572, 2020 01.
Article in English | MEDLINE | ID: mdl-31657880

ABSTRACT

Solid tumour frequently undergoes metabolic stress during tumour development because of inadequate blood supply and the high nutrient expenditure. p53 is activated by glucose limitation and maintains cell survival via triggering metabolic checkpoint. However, the exact downstream contributors are not completely identified. BAG3 is a cochaperone with multiple cellular functions and is implicated in metabolic reprogramming of pancreatic cancer cells. The current study demonstrated that glucose limitation transcriptionally suppressed BAG3 expression in a p53-dependent manner. Importantly, hinderance of its down-regulation compromised cellular adaptation to metabolic stress triggered by glucose insufficiency, supporting that BAG3 might be one of p53 downstream contributors for cellular adaptation to metabolic stress. Our data showed that ectopic BAG3 expression suppressed p53 accumulation via direct interaction under metabolic stress. Thereby, the current study highlights the significance of p53-mediated BAG3 suppression in cellular adaptation to metabolic stress via facilitating p53 accumulation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Gene Expression Regulation , Glucose Metabolism Disorders/prevention & control , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/metabolism , Cell Cycle , Cell Movement , Cell Proliferation , Glucose Metabolism Disorders/etiology , Glucose Metabolism Disorders/metabolism , Glucose Metabolism Disorders/pathology , HCT116 Cells , Humans , MCF-7 Cells , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...