Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(5): L052105, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115520

ABSTRACT

Annealing has proven highly successful in finding minima in a cost landscape. Yet, depending on the landscape, systems often converge towards local minima rather than global ones. In this Letter, we analyze the conditions for which annealing is approximately successful in finite time. We connect annealing to stochastic thermodynamics to derive a general bound on the distance between the system state at the end of the annealing and the ground state of the landscape. This distance depends on the amount of state updates of the system and the accumulation of nonequilibrium energy, two protocol and energy landscape-dependent quantities which we show are in a trade-off relation. We describe how to bound the two quantities both analytically and physically. This offers a general approach to assess the performance of annealing from accessible parameters, both for simulated and physical implementations.

2.
Phys Rev E ; 108(5-1): 054119, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115542

ABSTRACT

Annealing is the process of gradually lowering the temperature of a system to guide it towards its lowest energy states. In an accompanying paper [Y. Luo et al., Phys. Rev. E 108, L052105 (2023)10.1103/PhysRevE.108.L052105], we derived a general bound on annealing performance by connecting annealing with stochastic thermodynamics tools, including a speed limit on state transformation from entropy production. We here describe the derivation of the general bound in detail. In addition, we analyze the case of simulated annealing with Glauber dynamics in depth. We show how to bound the two case-specific quantities appearing in the bound, namely the activity, a measure of the number of microstate jumps, and the change in relative entropy between the state and the instantaneous thermal state, which is due to temperature variation. We exemplify the arguments by numerical simulations on the Sherrington-Kirkpatrick (SK) model of spin glasses.

3.
Phys Rev Lett ; 131(8): 080801, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37683172

ABSTRACT

Device-independent quantum key distribution (DIQKD) is information-theoretically secure against adversaries who possess a scalable quantum computer and who have supplied malicious key-establishment systems; however, the DIQKD key rate is currently too low. Consequently, we devise a DIQKD scheme based on the quantum nonlocal Mermin-Peres magic square game: our scheme asymptotically delivers DIQKD against collective attacks, even with noise. Our scheme outperforms DIQKD using the Clauser-Horne-Shimony-Holt game with respect to the number of game rounds, albeit not number of entangled pairs, provided that both state visibility and detection efficiency are high enough.

4.
Phys Rev Lett ; 129(5): 050502, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35960585

ABSTRACT

The security of quantum key distribution (QKD) usually relies on that the users' devices are well characterized according to the security models made in the security proofs. In contrast, device-independent QKD-an entanglement-based protocol-permits the security even without any knowledge of the underlying quantum devices. Despite its beauty in theory, device-independent QKD is elusive to realize with current technologies. Especially in photonic implementations, the requirements for detection efficiency are far beyond the performance of any reported device-independent experiments. In this Letter, we report a proof-of-principle experiment of device-independent QKD based on a photonic setup in the asymptotic limit. On the theoretical side, we enhance the loss tolerance for real device imperfections by combining different approaches, namely, random postselection, noisy preprocessing, and developed numerical methods to estimate the key rate via the von Neumann entropy. On the experimental side, we develop a high-quality polarization-entangled photon source achieving a state-of-the-art (heralded) detection efficiency about 87.5%. Although our experiment does not include random basis switching, the achieved efficiency outperforms previous photonic experiments involving loophole-free Bell tests. Together, we show that the measured quantum correlations are strong enough to ensure a positive key rate under the fiber length up to 220 m. Our photonic platform can generate entangled photons at a high rate and in the telecom wavelength, which is desirable for high-speed generation over long distances. The results present an important step toward a full demonstration of photonic device-independent QKD.

5.
Phys Rev Lett ; 129(5): 050402, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35960591

ABSTRACT

Quantum pseudotelepathy is a strong form of nonlocality. Different from the conventional nonlocal games where quantum strategies win statistically, e.g., the Clauser-Horne-Shimony-Holt game, quantum pseudotelepathy in principle allows quantum players to with probability 1. In this Letter, we report a faithful experimental demonstration of quantum pseudotelepathy via playing the nonlocal version of Mermin-Peres magic square game, where Alice and Bob cooperatively fill in a 3×3 magic square. We adopt the hyperentanglement scheme and prepare photon pairs entangled in both the polarization and the orbital angular momentum degrees of freedom, such that the experiment is carried out in a resource-efficient manner. Under the locality and fair-sampling assumption, our results show that quantum players can simultaneously win all the queries over any classical strategy.

6.
Phys Rev E ; 105(4-1): 044147, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590656

ABSTRACT

A bit reset is a basic operation in irreversible computing. This costs work and dissipates energy in the computer, creating a limit on speeds and energy efficiency of future irreversible computers. It was recently shown by Zhen et al. [Phys. Rev. Lett. 127, 190602 (2021)0031-900710.1103/PhysRevLett.127.190602] that for a finite-time reset protocol, the additional work on top of the quasistatic protocol can always be minimized by considering a two-level system, and then be lower bounded through a thermodynamical speed limit. An important question is to understand under what protocol parameters, including a bit reset error and maximum energy shift, this penalty decreases exponentially vs inverse linearly in the protocol time. Here we provide several analytical results to address this question, as well as numerical simulations of specific examples of protocols.

7.
Phys Rev Lett ; 127(19): 190602, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797137

ABSTRACT

We consider how the energy cost of bit reset scales with the time duration of the protocol. Bit reset necessarily takes place in finite time, where there is an extra penalty on top of the quasistatic work cost derived by Landauer. This extra energy is dissipated as heat in the computer, inducing a fundamental limit on the speed of irreversible computers. We formulate a hardware-independent expression for this limit in the framework of stochastic processes. We derive a closed-form lower bound on the work penalty as a function of the time taken for the protocol and bit reset error. It holds for discrete as well as continuous systems, assuming only that the master equation respects detailed balance.

8.
Entropy (Basel) ; 22(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-33286852

ABSTRACT

Quantum key distribution (QKD) networks hold promise for sharing secure randomness over multi-partities. Most existing QKD network schemes and demonstrations are based on trusted relays or limited to point-to-point scenario. Here, we propose a flexible and extensible scheme named as open-destination measurement-device-independent QKD network. The scheme enjoys security against untrusted relays and all detector side-channel attacks. Particularly, any users can accomplish key distribution under assistance of others in the network. As an illustration, we show in detail a four-user network where two users establish secure communication and present realistic simulations by taking into account imperfections of both sources and detectors.

9.
Phys Rev Lett ; 124(1): 010502, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31976724

ABSTRACT

Ensuring the nonentanglement-breaking (non-EB) property of quantum channels is crucial for the effective distribution and storage of quantum states. However, a practical method for direct and accurate certification of the non-EB feature is highly desirable. Here, we propose and verify a realistic source based measurement device independent certification of non-EB channels. Our method is resilient to repercussions on the certification from experimental conditions, such as multiphotons and imperfect state preparation, and can be implemented with an information incomplete set. We achieve good agreement between experimental outcomes and theoretical predictions, which is validated by the expected results of the ideal semiquantum signaling game, and accurately certify the non-EB channels. Furthermore, our approach is highly robust to effects from noise. Therefore, the proposed approach can be expected to play a significant role in the design and evaluation of realistic quantum channels.

10.
Entropy (Basel) ; 21(4)2019 Apr 20.
Article in English | MEDLINE | ID: mdl-33267136

ABSTRACT

The Einstein-Podolsky-Rosen (EPR) steering is a subtle intermediate correlation between entanglement and Bell nonlocality. It not only theoretically completes the whole picture of non-local effects but also practically inspires novel quantum protocols in specific scenarios. However, a verification of EPR steering is still challenging due to difficulties in bounding unsteerable correlations. In this survey, the basic framework to study the bipartite EPR steering is discussed, and general techniques to certify EPR steering correlations are reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL
...