Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 184: 114274, 2024 May.
Article in English | MEDLINE | ID: mdl-38609251

ABSTRACT

Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.


Subject(s)
Oryza , Anthocyanins , Albumins , Sodium Chloride , Sodium Chloride, Dietary , Edible Grain , Ions
2.
Carbohydr Polym ; 278: 118931, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973749

ABSTRACT

To date, how the pH conditions of thermal processing tailor the structure and digestibility of resulting starch-based complexes remains largely unclear. Here, indica rice starch (IRS), stearic acid (SA), and a whey protein isolate (WPI) were used as materials. Increasing the pH value from 4 to 8 during thermal processing (pasting) mainly suppressed the starch digestion of starch-WPI-SA complexes rather than starch-SA counterparts. The starch-SA complexes showed moderate structural changes as the pH value rose, and there was less rapidly digestible starch (RDS) only at pH 8. For the starch-WPI-SA complexes, an increased pH value allowed larger nonperiodic structures and more V-type starch crystallites, with almost unchanged short-range orders but apparently collapsed networks at pH 8. Such ternary complexes displayed more resistant starch (RS) as the pH value rose. The ternary sample at pH 8 contained ca. 29.87% of the RS fractions.


Subject(s)
Lipids/chemistry , Starch/chemistry , Temperature , Whey Proteins/chemistry , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...