Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 9(8): 8609-16, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26258909

ABSTRACT

We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.

2.
J Nanosci Nanotechnol ; 9(1): 141-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19441288

ABSTRACT

Four-cation nanograined strontium and magnesium doped lanthanum gallate (La0.8Sr0.2) (Ga0.9Mg0.1)O(3-delta) (LSGM) and its composite with 2 wt% of ceria (LSGM-Ce) were prepared. Morphologically homogeneous nanoreactors, i.e., complex intermediate metastable aggregates of desired composition were assembled by spray atomization technique, and subsequently loaded with nanoparticles of highly energetic C3H6N6O6. Rapid nanoblast calcination technique was applied and the final composition was synthesized within the preliminary localized volumes of each single nanoreactor on the first step of spark plasma treatment. Subsequent SPS consolidations of nanostructured extremely active LSGM and LSGM-Ce powders were achieved by rapid treatment under pressures of 90-110 MPa. This technique provided the heredity of the final structure of nanosize multimetal oxide, allowed the prevention of the uncontrolled agglomeration during multicomponent aggregates assembling, subsequent nanoblast calcination, and final ultra-rapid low-temperature SPS consolidation of nanostructured ceramics. LaSrGaMgCeO(3-delta) nanocrystalline powder consisting of approximately 11 nm crystallites was consolidated to LSGM-Ce nanoceramic with average grain size of approximately 14 nm by low-temperature SPS at 1250 degrees C. Our preliminary results indicate that nanostructured samples of (La0.8Sr0.2)(Ga0.9Mg0.1)O(3-delta) with 2 wt% of ceria composed of approximataley 14 nm grains can exhibit giant magnetoresistive effect in contrast to the usual paramagnetic properties measured on the samples with larger grain size.

SELECTION OF CITATIONS
SEARCH DETAIL
...