Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(4): 601-605, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29398542

ABSTRACT

Recent analysis of transcriptomes has revealed that RNA molecules perform a myriad of functions beyond coding for proteins. RNA molecules can fold into complex secondary and tertiary structures, which are critical for regulating their function. Selective Hydroxyl Acylation analyzed by Primer Extension, or SHAPE is a common method for probing RNA structure in and outside of cells. Recent developments in SHAPE include the design of acyl imidazole acylating electrophiles with alkyl azides to enrich the sites of SHAPE adduct formation. Enrichment is key for next-generation sequencing experiments as it dramatically improves the signal. In a recent comparison of different structures of such reagents, we realized that furoyl acylating reagents form hyper-stable ester adducts with hydroxyls. This prompted us to design, synthesize and test a novel dual-functioning SHAPE probe (FAI-N3), which has the stable furoyl scaffold and the alkyl azide for enrichment. Herein we present the results that show FAI-N3 is a suitable probe for RNA structure analysis by SHAPE and that it can be used for enrichment of SHAPE adducts. These results strongly demonstrate that FAI-N3 is an ideal probe for structure probing in cells and will be very useful for sequencing-based analysis of SHAPE.


Subject(s)
Azides/chemistry , Furans/chemistry , Imidazoles/chemistry , Molecular Probes/chemistry , RNA/chemistry , Azides/chemical synthesis , Dithiothreitol/chemistry , Furans/chemical synthesis , Imidazoles/chemical synthesis , Molecular Probes/chemical synthesis , Nucleic Acid Conformation
2.
Biochemistry ; 56(13): 1811-1814, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28319368

ABSTRACT

RNA molecules depend on structural elements that are critical for cellular function. Chemical methods for probing RNA structure have emerged as a necessary component of characterizing RNA function. As such, understanding the limitations and idiosyncrasies of these methods is essential for their utility. Selective hydroxyl acylation has emerged as a common method for analyzing RNA structure. Ester products as a result of 2'-hydroxyl acylation can then be identified through reverse transcription or mutational enzyme profiling. The central aspect of selective hydroxyl acylation analyzed by primer extension (SHAPE) experiments is the fact that stable ester adducts are formed on the 2'-hydroxyl. Despite its importance, there has not been a direct comparison of SHAPE electrophiles for their ability to make stable RNA adducts. Herein, we conduct a systematic analysis of hydrolysis stability experiments to demonstrate that furoyl imidazole SHAPE reagents form stable ester adducts even at elevated temperatures. We also demonstrate that the acylation reaction with the furoyl acylimidaole SHAPE reagent can be controlled with dithiothreitol quenching, even in live cells. These results are important for our understanding of the biochemical details of the SHAPE experiment.


Subject(s)
Adenosine Triphosphate/chemistry , Dithiothreitol/chemistry , Hydroxyl Radical/chemistry , Imidazoles/chemistry , RNA/chemistry , Acylation , Cell Line , DNA Primers/chemistry , Hot Temperature , Humans , Imidazoles/pharmacology , Indicators and Reagents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...