Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(1-1): 014139, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37583167

ABSTRACT

We explore the properties of run-and-tumble particles moving in a piecewise-linear "ratchet" potential by deriving analytic results for the system's steady-state probability density, current, entropy production rate, extractable power, and thermodynamic efficiency. The ratchet's broken spatial symmetry rectifies the particles' self-propelled motion, resulting in a positive current that peaks at finite values of the diffusion strength, ratchet height, and particle self-propulsion speed. Similar nonmonotonic behavior is also observed for the extractable power and efficiency. We find the optimal apex position for generating maximum current varies with diffusion and that entropy production can have nonmonotonic dependence on diffusion. In particular, for vanishing diffusion, entropy production remains finite when particle self-propulsion is weaker than the ratchet force. Furthermore, power extraction with near-perfect efficiency is achievable in certain parameter regimes due to the simplifications afforded by modeling "dry" active particles. In the final part, we derive mean first-passage times and splitting probabilities for different boundary and initial conditions. This work connects the study of work extraction from active matter with exactly solvable active particle models and will therefore facilitate the design of active engines through these analytic results.

2.
J Phys A Math Theor ; 56(17): 175002, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37064595

ABSTRACT

We introduce a procedure to test a theory for point particle entity, that is, whether said theory takes into account the discrete nature of the constituents of the system. We then identify the mechanism whereby particle entity is enforced in the context of two field-theoretic frameworks designed to incorporate the particle nature of the degrees of freedom, namely the Doi-Peliti field theory and the response field theory that derives from Dean's equation. While the Doi-Peliti field theory encodes the particle nature at a very fundamental level that is easily revealed, demonstrating the same for Dean's equation is more involved and results in a number of surprising diagrammatic identities. We derive those and discuss their implications. These results are particularly pertinent in the context of active matter, whose surprising and often counterintuitive phenomenology rests wholly on the particle nature of the agents and their degrees of freedom as particles.

3.
Entropy (Basel) ; 22(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33287020

ABSTRACT

The rate of entropy production by a stochastic process quantifies how far it is from thermodynamic equilibrium. Equivalently, entropy production captures the degree to which global detailed balance and time-reversal symmetry are broken. Despite abundant references to entropy production in the literature and its many applications in the study of non-equilibrium stochastic particle systems, a comprehensive list of typical examples illustrating the fundamentals of entropy production is lacking. Here, we present a brief, self-contained review of entropy production and calculate it from first principles in a catalogue of exactly solvable setups, encompassing both discrete- and continuous-state Markov processes, as well as single- and multiple-particle systems. The examples covered in this work provide a stepping stone for further studies on entropy production of more complex systems, such as many-particle active matter, as well as a benchmark for the development of alternative mathematical formalisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...