Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 465: 133376, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38159518

ABSTRACT

Deoxynivalenol contamination in feed and food, pervasive from growth, storage, and processing, poses a significant risk to dairy cows, particularly when exposed to a high-starch diet; however, whether a high-starch diet exacerbates these negative effects remains unclear. Therefore, we investigated the combined impact of deoxynivalenol and dietary starch on the production performance, rumen function, and health of dairy cows using metabolomics and 16 S rRNA sequencing. Our findings suggested that both high- and low-starch diets contaminated with deoxynivalenol significantly reduced the concentration of propionate, isobutyrate, valerate, total volatile fatty acids (TVFA), and microbial crude protein (MCP) concentrations, accompanied by a noteworthy increase in NH3-N concentration in vitro and in vivo (P < 0.05). Deoxynivalenol altered the abundance of microbial communities in vivo, notably affecting Oscillospiraceae, Lachnospiraceae, Desulfovibrionaceae, and Selenomonadaceae. Additionally, it significantly downregulated lecithin, arachidonic acid, valine, leucine, isoleucine, arginine, and proline metabolism (P < 0.05). Furthermore, deoxynivalenol triggered oxidative stress, inflammation, and dysregulation in immune system linkage, ultimately compromising the overall health of dairy cows. Collectively, both high- and low-starch diets contaminated with deoxynivalenol could have detrimental effects on rumen function, posing a potential threat to production performance and the overall health of cows. Notably, the negative effects of deoxynivalenol are more pronounced with a high-starch diet than a low-starch diet.


Subject(s)
Microbiota , Milk , Trichothecenes , Female , Cattle , Animals , Milk/metabolism , Lactation/physiology , Rumen/metabolism , Diet/veterinary , Starch/metabolism , Animal Feed/analysis , Fermentation
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-986882

ABSTRACT

OBJECTIVE@#To describe the secular trends of age at menarche and age at natural menopause of women from a county of Shandong Province.@*METHODS@#Based on the data of the Premarital Medical Examination and the Cervical Cancer and Breast Cancer Screening of the county, the secular trends of age at menarche in women born in 1951 to 1998 and age at menopause in women born in 1951 to 1975 were studied. Joinpoint regression was used to identify potential inflection points regarding the trend of age at menarche. Average hazard ratios (AHR) of early menopause among women born in different generations were estimated by performing multivariate weighted Cox regression.@*RESULTS@#The average age at menarche was (16.43±1.89) years for women born in 1951 and (13.99±1.22) years for women born in 1998. The average age at menarche was lower for urban women than that for rural women, and the higher the education level, the lower the average age at menarche. Joinpoint regression analysis identified three inflection points: 1959, 1973 and 1993. The average age at menarche decreased annually by 0.03 (P < 0.001), 0.08 (P < 0.001), and 0.03 (P < 0.001) years respectively for women born during 1951-1959, 1960-1973, and 1974-1993, while it remained stable for those born during 1994-1998 (P=0.968). As for age at menopause, compared with women born during 1951-1960, those born during 1961-1965, 1966-1970 and 1971-1975 showed a gradual decrease in the risk of early menopause and a tendency to delay the age at menopause. The stratified analysis presented that the risk of early menopause gradually decreased and the age of menopause showed a significant delay among those with education level of junior high school and below, but this trend was not obvious among those with education level of senior high school and above, where the risk of early menopause decreased and then increased among those with education level of college and above, and the corresponding AHRs were 0.90 (0.66-1.22), 1.07 (0.79-1.44) and 1.14 (0.79-1.66).@*CONCLUSION@#The age at menarche for women born since 1951 gradually declined until 1994 and leveled off, with a decrease of nearly 2.5 years in these years. The age at menopause for women born between 1951 and 1975 was generally delayed over time, but the trend of first increase and then decrease was observed among those with relatively higher education levels. In the context of the increasing delay in age at marriage and childbearing and the decline of fertility, this study highlights the necessity of the assessment and monitoring of women' s basic reproductive health status, especially the risk of early menopause.


Subject(s)
Female , Humans , Aged , Menarche , Menopause , Regression Analysis , Fertility , China/epidemiology , Age Factors
3.
Trop Anim Health Prod ; 54(3): 159, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35419715

ABSTRACT

This study aimed to access the effect of heat stress on milk yield, antioxidative levels, and serum metabolites in primiparous and multiparous Holstein dairy cows during the early lactation stage. A total of 200 cows were selected based on their month of calving (June, temperature humidity index (THI) = 66.72; July, THI = 70.30; August, THI = 69.32; September, THI = 67.20; October, THI = 59.45). Blood samples were collected on days 0, 21, 50, 80, and 100 after calving for serum oxidative status analysis and milk yield was recorded daily. The lower average daily milk yield was recorded among the cows that calved in June and July (P < 0.05), and the average daily milk yield of multiparous cows was higher than that of primiparous cows that calved in the same month (P < 0.05) from d1 to d100, suggesting that seasonal (June, July) heat stress negatively affected milk yield in both primiparous and multiparous cows at early lactation. The study also indicated that there was seasonal variation in most of the serum metabolites across the studied months. The study shows that heat stress (average THI = 70.30) was higher among the cows calving in June vis-à-vis those calving in October and differences were also observed among the primiparous cows and multiparous cows, respectively. These metabolites (e.g., glycine, serine, etc.) which showed significant variations were mainly involved in the pathways of aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, and the metabolism of glycine, serine and threonine. These data suggested that heat stress negatively affected the elevation of the serum oxidative and antioxidative index and thus badly influence milk yield. Metabolic biomarkers in serum associated with heat stress could be a reliable way to identify heat stress of primiparas and multiparas dairy cows.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Animals , Antioxidants/metabolism , Cattle , Cattle Diseases/metabolism , Female , Glycine/metabolism , Heat Stress Disorders/metabolism , Heat Stress Disorders/veterinary , Heat-Shock Response , Lactation , Milk/metabolism , Parity , Pregnancy , Serine/metabolism
4.
Front Nutr ; 8: 727714, 2021.
Article in English | MEDLINE | ID: mdl-34540880

ABSTRACT

High levels of starch is known to have positive effects on both energy supply and milk yield but increases the risk of rumen acidosis. The use of sugar as a non-structural carbohydrate could circumvent this risk while maintaining the benefits, but its effects and that of the simultaneous use of both sugar and starch are not as well-understood. This study aimed to evaluate the effects of different combinations of sugar and starch concentrations on ruminal fermentation and bacterial community composition in vitro in a 4 ×4 factorial experiment. Sixteen dietary treatments were formulated with 4 levels of sugar (6, 8, 10, and 12% of dietary dry matter), and 4 levels of starch (21, 23, 25, and 27% of dietary dry matter). Samples were taken at 0.5, 1, 3, 6, 12, and 24 h after cultivation to determine the disappearance rate of dry matter, rumen fermentation parameters and bacterial community composition. Butyric acid, gas production, and Treponema abundance were significantly influenced by the sugar level. The pH, acetic acid, and propionic acid levels were significantly influenced by starch levels. However, the interactive effect of sugar and starch was only observed on the rate of dry matter disappearance. Furthermore, different combinations of starch and sugar had different effects on volatile fatty acid production rate, gas production rate, and dry matter disappearance rate. The production rate of rumen fermentation parameters in the high sugar group was higher. Additionally, increasing the sugar content in the diet did not change the main phylum composition in the rumen, but significantly increased the relative abundance of Bacteroidetes and Firmicutes phyla, while the relative abundance of Proteobacteria was reduced. At the genus level, the high glucose group showed significantly higher relative abundance of Treponema (P < 0.05) and significantly lower relative abundance of Ruminobacter, Ruminococcus, and Streptococcus (P < 0.05). In conclusion, different combinations of sugar and starch concentrations have inconsistent effects on rumen fermentation characteristics, suggesting that the starch in diets cannot be simply replaced with sugar; the combined effects of sugar and starch should be considered to improve the feed utilization rate.

5.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 212-223, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31733004

ABSTRACT

The objective of this study was to investigate the effects of yeast culture (YC) on the growth performance, caecal microbial community and metabolic profile of broilers. A total of 350 1-day-old healthy Arbor Acres broilers were randomly assigned to seven treatment groups. The first group received a basal diet without YC supplementation, whereas the remaining groups received a basal diet supplemented with either YC fermented for 12, 24, 36, 48 or 60 hr, or a commercial YC product (SZ2). MiSeq 16S rRNA high-throughput sequencing was used to investigate the bacterial community structure, and gas chromatography-mass spectrometry was used to identify the metabolites in the caeca of broilers. The broilers that received a diet supplemented with YC had a higher average daily gain and average daily feed intake than those received YC-free or SZ2-enriched diets. The feed conversion ratio (FCR) of YCs fermented for 24 hr resulted in the best feed efficiency, whereas the FCR of YC fermented for 60 hr resulted in poor feed efficiency (p < .05). In the caeca of broilers, the bacterial communities were well separated, as determined by principal component analysis, and the proportions of the eight genera were significantly different among the seven groups (p < .05). The genus Akkermansia was the most abundant when the diet supplemented with YC fermented for 24 hr (p < .05). Furthermore, the Firmicutes/Bacteroidetes ratio was positively correlated with the FCR in the caecum (r = .47, p < .005). Five differentially expressed metabolites (i.e., L-alanine, benzeneacetic acid, D-mannose, D-arabitol and cholesterol) were identified in the caeca of broilers that received diets supplemented with YCs fermented for 24 or 60 hr. In summary, the different fermentation times of the YCs can markedly improve the growth performance and FCR of broilers by altering the caecal microbial community, and the growth performance which is related to the changes in key metabolic pathways.


Subject(s)
Cecum/microbiology , Chickens/growth & development , Gastrointestinal Microbiome/physiology , Yeasts/physiology , Animals , Chickens/microbiology , Female , Fermentation , Male
6.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1274-1282, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31149756

ABSTRACT

The effects of yeast culture (YC) supplementation and the dietary ratio of non-structural carbohydrate to fat (NSCFR) on growth performance, carcass traits and fatty acid profile of the longissimus dorsi (LD) muscle in lambs were determined in a 2 × 3 full factorial experiment. Thirty-six Small-tailed Han lambs were randomly divided into six groups with six replicates per group. The lambs were fed one of the six pelleted total mixed rations (TMRs) for 60 days after 15 adaption days. The six rations were formed by two NSCFRs (11.37 and 4.57) and three YC supplementation levels (0, 0.8 and 2.3 g/kg dietary dry matter). The average daily gain (ADG), dry matter intake (DMI) and feed conversion ratio (FCR) data of each lamb were recorded and calculated. All the lambs were slaughtered for determining carcass traits and fatty acid profile of the LD muscle. DMI was significantly increased (p < 0.05) in a quadratic fashion with 0.8 g/kg of YC supplementation. Carcass weight (CW) and dressing percentage (DP) were significantly increased (p < 0.05) in a linear fashion with 2.3 g/kg of YC supplementation. Animals fed with high-NSCFR diet had higher (p < 0.05) contents of myristoleic acid (C14:1), pentadecanoic acid (C15:0) and cis-10-heptadecenoic acid (C17:1), and lower (p < 0.05) stearic acid (C18:0) content in LD muscle than those fed with low-NSCFR diet. Moreover, ADG, growth rate (GR), backfat thickness (BFT), percentages of crude fat (CF) and crude protein (CP), SFAs, MUFAs and PUFAs in LD muscle, were significantly affected (p < 0.05) by interaction of dietary NSCFR and supplemental YC level. Overall, YC not only improved the growth performance and carcass traits of the animals but also modified the fatty acid profile of the LD muscle. Furthermore, the effects of YC supplementation may depend on dietary compositions.


Subject(s)
Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Supplements , Muscle, Skeletal/chemistry , Sheep/growth & development , Yeasts , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Body Composition/drug effects , Diet/veterinary , Fatty Acids/chemistry , Fatty Acids/metabolism , Muscle, Skeletal/physiology
7.
Asian-Australas J Anim Sci ; 32(12): 1889-1896, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31010972

ABSTRACT

OBJECTIVE: This study aimed to investigate the effects of prepartum body condition score (BCS) on the milk yield, lipid metabolism, and oxidative status of Holstein cows. METHODS: A total of 112 multiparous Holstein cows were divided into 4 groups according to the BCS at 21 days before calving: medium BCS (3.0~3.25, MBCS), high BCS (3.5~3.75, HBCS), higher BCS (4.0~4.25, HerBCS), and highest BCS (4.5~5.0, HestBCS). Blood samples were collected on 21, 14, and 7 days before calving (precalving), on the calving day (calving), and on 7, 14, and 21 days after calving (postcalving). The indices of lipid metabolism and oxidative status were analyzed using bovine-specific ELISA kit. Colostrum were taken after calving and analyzed by a refractometer and milk analyzer. The individual milk yield was recorded every 3 days. RESULTS: The density and levels of immune globulin and lactoprotein of colostrum from Holstein cows in the HestBCS group were the highest (p&lt;0.05). These animals not only had the highest (p&lt;0.05) levels of serum non-esterified fatty acids and beta-hydroxybutyrate, but also had the highest (p&lt;0.05) levels of malondialdehyde, superoxide dismutase, catalase, vitamin A, and vitamin E. In addition, greater (p&lt;0.05) BCS loss was observed in the HestBCS cows. CONCLUSION: This study demonstrates that the milk yield, lipid metabolism, and oxidative status of Holstein cows are related to prepartum BCS and BCS loss during the transition period. HestBCS cows are more sensitive to oxidative stress and suffer greater loss of BCS after calving, whereas the MBCS animals had better milk yield performance.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-321766

ABSTRACT

<p><b>OBJECTIVE</b>To examine the proliferation of the neural progenitor cells in the subventricular zone (SVZ) and around the hematoma after intracerebral hemorrhage (ICH) in adult rats.</p><p><b>METHODS</b>ICH was induced by stereotactic injection of type VII collagenase into the corpus striatum of adult rats, followed by pulse or continuous intrapenitoneal injection of bromodeoxyuridine (Brdu) to label the proliferating cells. The rats were sacrificed on days 2, 7, 14 and 28 following the ICH for immunohistochemistry of the tissues in the SVZ and around the hemotoma to determine the number of Brdu- immunoreactive cells.</p><p><b>RESULTS</b>With pulse Brdu labeling, a significant increase in the number of Brdu-immunoreactive cells in the ipsilateral and contralateral tissues in the SVZ and around the hematoma was observed 2-14 days, and the cell number reached the maximum on day 7 after ICH as compared with that of the sham-operated group. With continuous Brdu injection, the increase was observed on day 14 after ICH, and till day 28, the Brdu-immunoreactive cells in the SVZ decreased to the control level, but some positive cells still persisted in the tissues around the hematoma.</p><p><b>CONCLUSION</b>ICH induces transient and regional increase in the cell proliferation in the ipilateral and contraletral SVZ and tissues around the hematoma, and the proliferating cells in the SVZ may migrate towards the hematoma area.</p>


Subject(s)
Animals , Male , Rats , Cell Proliferation , Cerebral Hemorrhage , Pathology , Cerebral Ventricles , Pathology , Hematoma , Pathology , Neurons , Pathology , Rats, Sprague-Dawley , Stem Cells , Pathology
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-356550

ABSTRACT

To investigate effects of rat bone marrow mesenchymal stem cells (rBMMSC) on hematopoiesis after allo-hematopoietic stem cell transplantation (HSCT), allogeneic BMT model from Fischer 344 rats (RT-1Al) to Wistar rats (RT-1Au) was established; effects of MSCs on hematopoietic reconstitution were studied by survival rate, peripheral blood counts, histological analysis and FACS at day 30 after transplantation. The results showed that (1) MSCs from donor Fisher344 could survive in recipient irradiated by lethal dose and could be found in the thymus, spleen and bone marrow of the recipient at 30 days after cotransplantation with BM by measuring EGFP gene. (2) Cotransplanation of MSCs and BM improved hematopoietic reconstitution. Lymphocyte and platelet counts of peripheral blood in cotransplantation group were higher than those in the control group. Active hematopoiesis and increase of bone marrow nucleated cells were observed in cotransplantation group. MSCs significantly enhanced hematopoiesis of B lymphocyte and megakaryocytopoietic lineages by FACS analysis. It is concluded that (1) MSCs of Fisher344 can be found in the thymus, spleen, bone marrow of the recipients at 30 days after cotransplantion by measuring EGFP gene. (2) hematopoietic reconstitution is significantly enhanced by MSCs cotransplanted with BM.


Subject(s)
Animals , Male , Rats , Bone Marrow Transplantation , Methods , Cell Differentiation , Physiology , Flow Cytometry , Hematopoiesis , Physiology , Lymphocyte Count , Mesenchymal Stem Cell Transplantation , Methods , Mesenchymal Stem Cells , Cell Biology , Physiology , Models, Animal , Platelet Count , Rats, Inbred F344 , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...