Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030465

ABSTRACT

In the past year, there has been significant progress in the utilization of electrochemical strategies for the determination of harmful substances. Among those, the electrochemical determination of nicotine (NIC) has continued to be of significant interest ascribed to the global health concern of e-cigarette products, nowadays. Electrochemical sensors have become promising tools for the detection of NIC ascribed to their high sensitivity, selectivity, and ease of use. This review article provides a concise overview of the advanced developments in electrochemical sensors for NIC detection using modified functional materials such as carbon-based materials, metal-organic frameworks (MOF), MXene, polymer, and metallic based modifiers. The sensitivity of electrochemical sensors can be improved by modifying them with these conductive materials ascribed to their physical and chemical properties. The review also addresses the challenges and future perspectives in the field, including sensitivity and selectivity improvements, stability and reproducibility issues, integration with data analysis techniques, and emerging trends. In conclusion, this review article may be of interest to researchers intending to delve into the development of functional electrochemical sensors in future studies.

2.
Environ Geochem Health ; 46(3): 92, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367085

ABSTRACT

A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.


Subject(s)
Carbon , Metal Nanoparticles , Methylene Blue/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Biomass , Light
3.
Sci Total Environ ; 896: 165200, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37400020

ABSTRACT

Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.


Subject(s)
Microalgae , Reactive Oxygen Species/metabolism , Microalgae/metabolism , Biomass , Oxidative Stress , Stress, Physiological , Antioxidants/metabolism , Biofuels
4.
Chemosphere ; 286(Pt 2): 131731, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34388866

ABSTRACT

Photocatalysis has gained attention as a viable wastewater remediation technique. However, the difficulty of recovering powder-based photocatalyst has often become a major limitation for their on-site practical application. Herein, we report on the successful in-situ preparation of a novel three-dimensional (3D) photocatalyst consisting of Cu2O/TiO2 loaded on a cellulose nanofiber (CNF)/reduced graphene hydrogel (rGH) via facile hydrothermal treatment and freeze-drying. The 3D macrostructure not only provides a template for the anchoring of Cu2O and TiO2 but also provides an efficient electron transport pathway for enhanced photocatalytic activity. The results showed that the Cu2O and TiO2 were uniformly loaded onto the aerogel framework resulting in the composites with large surface area with exposed actives sites. As compared to bare rGH, CNF/rGH, Cu2O/CNF/rGH and TiO2/CNF/rGH, the Cu2O/TiO2/CNF/rGH showed improved photocatalytic activity for methyl orange (MO) degradation. MO degradation pathway is proposed based on GC-MS analysis. The enhanced photoactivity can be attributed to the charge transfer and electron-hole separation from the synergistic effect of Cu2O/TiO2 anchored on CNF/rGH. In terms of their anti-bacterial activity towards Staphylococcus aureus and Escherichia coli, the synergistic effect of the Cu2O/TiO2 anchored on the CNF/rGH framework showed excellent activity towards the bacteria.


Subject(s)
Graphite , Nanofibers , Anti-Bacterial Agents/pharmacology , Catalysis , Cellulose , Copper , Hydrogels , Titanium
5.
Genome Biol ; 19(1): 92, 2018 07 18.
Article in English | MEDLINE | ID: mdl-30016975

ABSTRACT

Growing popularity and diversity of genomic data demand portable and versatile genome browsers. Here, we present an open source programming library called GIVE that facilitates the creation of personalized genome browsers without requiring a system administrator. By inserting HTML tags, one can add to a personal webpage interactive visualization of multiple types of genomics data, including genome annotation, "linear" quantitative data, and genome interaction data. GIVE includes a graphical interface called HUG (HTML Universal Generator) that automatically generates HTML code for displaying user chosen data, which can be copy-pasted into user's personal website or saved and shared with collaborators. GIVE is available at: https://www.givengine.org/ .


Subject(s)
Algorithms , Genome, Human , Information Dissemination , User-Computer Interface , Computational Biology , Computer Graphics , Databases, Genetic , Gene Library , HEK293 Cells , Humans , Internet , MCF-7 Cells
6.
J Vis Exp ; (128)2017 10 08.
Article in English | MEDLINE | ID: mdl-29053670

ABSTRACT

Compared with the robust text-based search tools for genomic or RNA sequencing data, current methodologies for pattern-based searches of epigenomic and other functional genomic data are very limited. GeNemo is the first online search tool that accomplishes this goal. Users input their functional genomic data in the Browser Extensible Data (BED), Peaks, and bigWig formats, and may search for data in any of the three formats. Users may specify which types of datasets to search against, choosing from a variety of online datasets, with the Encyclopedia of DNA Elements (ENCODE) representing different epigenomic marks, transcriptional factor binding sites, and chromatin hypersensitivities or accessibilities in specific cell types, and developmental stages or species (mouse or human). GeNemo returns a list of genomic regions with matching patterns to the input data, which may be viewed in the browser as well as downloaded in the BED file format. The upgraded GeNemo has improved graphical display, has more robust interface, and is no longer prone to errors due to changes in the University of California, Santa Cruz (UCSC) genome browser. Troubleshooting steps for common problems are discussed. As the amount of functional genomic data is expanding exponentially, there is a critical need to develop and refine new bioinformatic tools such as GeNemo for data analyses and interpretation.


Subject(s)
Bioengineering/methods , Epigenomics/methods , Genomics/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...