Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
3D Print Addit Manuf ; 11(2): e801-e811, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38689907

ABSTRACT

Laser powder bed fusion (LPBF) of complex-structure 316L stainless steel (316L ss) parts has a wide application prospects in aerospace, biomedical, and defense industry fields. However, the surface roughness (Ra) of the LPBF sample is unsatisfactory due to the process characteristics of layer-by-layer selective melting and cumulative forming, which limits its applications in the engineering field. Herein, a gradient voltage electrochemical polishing strategy is proposed based on the characteristics of electrochemical polishing technology, which can polish complex structures. The mechanisms of polishing process parameters and polishing strategy on the surface finish of LPBF parts are investigated. The gradient voltage polishing strategy is extended to complex structures, and the Ra of the inner surfaces of square and round tubes are successfully reduced to about 1 µm. The gradient electrochemical polishing process for surface finish post-treatment of LPBF parts can broaden the engineering applications of complex-structure metal parts.

2.
Adv Sci (Weinh) ; 10(12): e2206486, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36683254

ABSTRACT

4D printing of metallic shape-morphing systems can be applied in many fields, including aerospace, smart manufacturing, naval equipment, and biomedical engineering. The existing forming materials for metallic 4D printing are still very limited except shape memory alloys. Herein, a 4D printing method to endow non-shape-memory metallic materials with active properties is presented, which could overcome the shape-forming limitation of traditional material processing technologies. The thermal stress spatial control of 316L stainless steel forming parts is achieved by programming the processing parameters during a laser powder bed fusion (LPBF) process. The printed parts can realize the shape changing of selected areas during or after forming process owing to stress release generated. It is demonstrated that complex metallic shape-morphing structures can be manufactured by this method. The principles of printing parameters programmed and thermal stress pre-set are also applicable to other thermoforming materials and additive manufacturing processes, which can expand not only the materials used for 4D printing but also the applications of 4D printing technologies.

3.
Polymers (Basel) ; 14(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35267725

ABSTRACT

Fused deposition modeling is the most widely used 3D-printing technology, with the advantage of being an accessible forming process. However, the poor mechanical properties of the formed parts limit its application in engineering. Herein, a new ultrasonic-assisted fused deposition modeling 3D-printing method was proposed to improve the mechanical properties of the formed parts. The effects of ultrasonic vibration substrate process parameters and printing process parameters on the tensile and bending properties of formed samples were studied. The tensile strength and bending strength of the samples printed with a 12 µm ultrasonic amplitude can be increased by 13.2% and 12.6%, respectively, compared with those printed without ultrasonic vibration. The influence mechanism of ultrasonic vibration on mechanical properties was studied through microscopic characterization and in situ infrared monitoring experiments. During the printing process, increasing the ultrasonic vibration and temperature employed via the ultrasonic substrate can reduce the pore defects inside the sample. The mechanical properties of FDM-formed samples can be controlled by adjusting ultrasonic-assisted process parameters, which can broaden the application of 3D printing.

SELECTION OF CITATIONS
SEARCH DETAIL
...