Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 651: 123759, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38163527

ABSTRACT

The disintegration of tablets plays a crucial role in facilitating drug release, and disintegrants are used in tablet formulations to promote the disintegration process. This study aimed to explore and understand the impact of salt incorporation on tablet disintegratability. The study was designed to modulate the microenvironment temperature of tablets through dissolution of salts incorporated in the formulation, with the aim to facilitate tablet disintegration. It was observed that the incorporation of salts generally prolonged tablet disintegration. The impact of incorporating salts on tablet properties was both concentration-dependent and multi-factorial. The observed effect of salts on tablet disintegration was likely influenced by a combination of factors, including different properties of the salts, enhanced solubility of components, the temperature difference between the tablet and the disintegration medium, the expansion of air resulting from increased microenvironment temperature, and the competition for water between salts and disintegrants. These factors collectively contributed to the overall impact of salts on tablet disintegration.


Subject(s)
Excipients , Salts , Sodium Chloride , Solubility , Tablets
2.
Pharmaceutics ; 14(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36559221

ABSTRACT

Tablet disintegration is an important pre-requisite for drug dissolution and absorption. The disintegration test is typically conducted at 37 °C, but the intragastric temperature may vary due to meals or fever. This study investigated the effects of temperature and compaction pressure on tablet disintegratability to gain deeper insights into superdisintegrant sensitivity and function. Tablets with either sodium starch glycolate or crospovidone as disintegrant were prepared at various compaction pressures and subjected to the disintegration test using different medium temperatures. Preheating of tablets was also employed to establish instant temperature equilibrium between the tablet and the disintegration medium. Liquid penetration and disintegration were faster as the medium temperature increased or compaction pressure decreased. Swelling or strain recovery disintegrants exhibited similar sensitivity to variations in the medium temperature. Preheating of the tablets resulted in slower disintegration, but this effect was reversible upon cooling, hence the slower disintegration was unlikely to be attributed to changes in the disintegrant physical state. The temperature difference between the tablet and the disintegration medium likely affected the rate of fluid flow into tablets and influenced disintegration. Understanding disintegrant temperature sensitivity would help to avoid unacceptable fluctuations in disintegration due to temperature variations. The temperature difference effect could also be harnessed to boost disintegrant performance.

3.
Pharmaceutics ; 10(3)2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29949920

ABSTRACT

Paraffin wax is potentially useful for producing spray-congealed drug-loaded microparticles with sustained-release and taste-masking properties. To date, there is little information about the effects of blending lipids with paraffin wax on the melt viscosity. In addition, drug particles may not be entirely coated by the paraffin wax matrix. In this study, drug-loaded paraffin wax microparticles were produced by spray-congealing, and the effects of lipid additives on the microparticle production were investigated. The influence of lipid additives (stearic acid, cetyl alcohol, or cetyl esters) and drug (paracetamol) on the rheological properties of paraffin wax were elucidated. Fourier transform-infrared spectroscopy was conducted to investigate the interactions between the blend constituents. Selected formulations were spray-congealed, and the microparticles produced were characterized for their size, drug content, degree of surface drug coating, and drug release. The viscosity of wax-lipid blends was found to be mostly lower than the weighted viscosity when interactions occurred between the blend constituents. Molten paraffin wax exhibited Newtonian flow, which was transformed to plastic flow by paracetamol and pseudoplastic flow by the lipid additive. The viscosity was decreased with lipid added. Compared to plain wax, wax-lipid blends produced smaller spray-congealed microparticles. Drug content remained high. Degree of surface drug coating and drug release were also higher. The lipid additives altered the rheological properties and hydrophobicity of the melt and are useful for modifying the microparticle properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...