Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Emerg Microbes Infect ; 13(1): 2348498, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38686555

ABSTRACT

Bacillus paranthracis, a Gram-positive conditional pathogen of Bacillus cereus group species, is capable of causing foodborne and waterborne illnesses, leading to intestinal diseases in humans characterized by diarrhoea and vomiting. However, documented cases of B. paranthracis infection outbreaks are rare in the world, and the genomic background of outbreak strains is seldom characterized. This study retrospectively analyzed strains obtained from an outbreak in schools, as well as from water systems in peri-urban areas, China, in 2020. In total, 28 B. cereus group isolates were retrieved, comprising 6 from stool samples and 22 from water samples. Epidemiological and phylogenetic investigations indicated that the B. paranthracis isolate from drinking water as the causative agent of the outbreak. The genomic comparison revealed a high degree of consistency among 8 outbreak-related strains in terms of antimicrobial resistance gene profiles, virulence gene profiles, genomic content, and multilocus sequence typing (MLST). The strains related to the outbreak show highly similar genomic ring diagrams and close phylogenetic relationships. Additionally, this study shed light on the pathogenic potential and complexity of B. cereus group through its diversity in virulence genes and mice infection model. The findings highlight the usefulness of B. paranthracis genomes in understanding genetic diversity within specific environments and in tracing the source of pathogens during outbreak situations, thereby enabling targeted infection control interventions.


Subject(s)
Disease Outbreaks , Genome, Bacterial , Phylogeny , China/epidemiology , Animals , Humans , Mice , Virulence , Retrospective Studies , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/classification , Bacillus/pathogenicity , Multilocus Sequence Typing , Waterborne Diseases/epidemiology , Waterborne Diseases/microbiology , Male , Virulence Factors/genetics , Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Bacillus cereus/pathogenicity , Bacillus cereus/classification , Female , Genomics , Water Microbiology
2.
Ann Clin Microbiol Antimicrob ; 23(1): 24, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448920

ABSTRACT

BACKGROUND: Klebsiella variicola is considered a newly emerging human pathogen. Clinical isolates of carbapenemase and broad-spectrum ß-lactamase-producing K. variicola remain relatively uncommon. A strain of K. variicola 4253 was isolated from a clinical sample, and was identified to carry the blaIMP-4 and blaSFO-1 genes. This study aims to discern its antibiotic resistance phenotype and genomic characteristics. METHODS: Species identification was conducted using MALDI-TOF/MS. PCR identification confirmed the presence of the blaIMP-4 and blaSFO-1 genes. Antibiotic resistance phenotype and genomic characteristics were detected by antimicrobial susceptibility testing and whole-genome sequencing. Plasmid characterization was carried out through S1-PFGE, conjugation experiments, Southern blot, and comparative genomic analysis. RESULTS: K. variicola 4253 belonged to ST347, and demonstrated resistance to broad-spectrum ß-lactamase drugs and tigecycline while being insensitive to imipenem and meropenem. The blaIMP-4 and blaSFO-1 genes harbored on the plasmid p4253-imp. The replicon type of p4253-imp was identified as IncHI5B, representing a multidrug-resistant plasmid capable of horizontal transfer and mediating the dissemination of drug resistance. The blaIMP-4 gene was located on the In809-like integrative element (Intl1-blaIMP-4-aacA4-catB3), which circulates in Acinetobacter and Enterobacteriaceae. CONCLUSIONS: This study reports the presence of a strain of K. variicola, which is insensitive to tigecycline, carrying a plasmid harboring blaIMP-4 and blaSFO-1. It is highly likely that the strain acquired this plasmid through horizontal transfer. The blaIMP-4 array (Intl1-blaIMP-4-aacA4-catB3) is also mobile in Acinetobacter and Enterobacteriaceae. So it is essential to enhance clinical awareness and conduct epidemiological surveillance on multidrug-resistant K. variicola, conjugative plasmids carrying blaIMP-4, and the In809 integrative element.


Subject(s)
Acinetobacter , Klebsiella , Humans , Tigecycline/pharmacology , Klebsiella/genetics , Plasmids/genetics , beta-Lactamases/genetics
3.
Emerg Microbes Infect ; 13(1): 2317915, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38356197

ABSTRACT

The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative ß-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.


Subject(s)
Bacterial Infections , Enterococcus faecium , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Klebsiella pneumoniae , Drug Resistance, Multiple, Bacterial
5.
BMC Genomics ; 25(1): 2, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166565

ABSTRACT

BACKGROUND: The infection of carbapenem-resistant organisms was a huge threat to human health due to their global spread. Dealing with a carbapenem-resistant Serratia marcescens (CRSM) infection poses a significant challenge in clinical settings. This study aims to provide insights into strategies for controlling CRSM infection by exploring the transformation mechanism of carbapenem-resistance. METHODS: We used whole genome sequencing (WGS) to investigate the mechanism of carbapenem resistance in 14 S. marcescens isolates in vivo. The expression level of related genes and the minimum inhibitory concentration of meropenem (MICMEM) were also evaluated to confirm the mechanism of carbapenem resistance. RESULTS: Seven groups of S. marcescens, each consisting of two strains, were collected from a hospital and displayed a shift in MICMEM from low to high levels. Homology analysis revealed that the isolates in five groups were significantly different from the remaining two. WGS and experimental evidence indicated that four groups of strains developed carbapenem resistance by acquiring the blaKPC (obtaining group), while two groups (persisting group) increased the expression level of the blaKPC. In contrast, isolates in the last group (missing group) did not carry the blaKPC. All strains possessed multiple ß-lactamase genes, including blaCTX-M-14, blaSRT-1, and blaSRT-2. However, only in the missing group, the carbapenem-resistant strain lost an outer membrane protein-encoding gene, leading to increased blaCTX-M-14 expression compared to the carbapenem-susceptible strain. CONCLUSION: The study findings suggest that S. marcescens strains developed diverse carbapenem resistance in vivo through the evolution of drug resistance, rather than through clone replacement. We hypothesize that carbapenem resistance in S. marcescens was due to certain clonal types with a distinct mechanism.


Subject(s)
Carbapenems , Serratia marcescens , Humans , Carbapenems/pharmacology , Meropenem/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
6.
Microbiol Spectr ; 11(6): e0160223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37815354

ABSTRACT

IMPORTANCE: Elizabethkingia meningoseptica is an emerging infectious agent associated with life-threatening infections in immunocompromised individuals. However, there are limited data available on the genomic features of E. meningoseptica. This study aims to characterize the geographical distribution, phylogenetic evolution, pathogenesis, and transmission of this bacterium. A systematic analysis of the E. meningoseptica genome revealed that a common ancestor of this bacterium existed 90 years ago. The evolutionary history showed no significant relationship with the sample source, origin, or region, despite the presence of genetic diversity. Whole genome sequencing data also demonstrated that E. meningoseptica bacteria possess inherent resistance and pathogenicity, enabling them to spread within the same hospital and even across borders. This study highlights the potential for E. meningoseptica to cause severe nosocomial outbreaks and horizontal transmission between countries worldwide. The available evidence is crucial for the development of evidence-based public health policies to prevent global outbreaks caused by emerging pathogens.


Subject(s)
Chryseobacterium , Flavobacteriaceae Infections , Humans , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/microbiology , Phylogeny , Genomics , Disease Outbreaks , Probability , Anti-Bacterial Agents/therapeutic use
7.
mBio ; 14(5): e0133323, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37800953

ABSTRACT

IMPORTANCE: Typhoid fever is a life-threatening disease caused by Salmonella enterica serovar Typhi, resulting in a significant disease burden across developing countries. Historically, China was very much close to the global epicenter of typhoid, but the role of typhoid transmission within China and among epicenter remains overlooked in previous investigations. By using newly produced genomics on a national scale, we clarify the complex local and global transmission history of such a notorious disease agent in China spanning the most recent five decades, which largely undermines the global public health network.


Subject(s)
Typhoid Fever , Humans , Typhoid Fever/epidemiology , Salmonella typhi/genetics , Genomics , China/epidemiology , Public Health
8.
BMC Genomics ; 24(1): 506, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37649002

ABSTRACT

BACKGROUND: The emergence and wide spread of carbapenemase-producing Enterobacteriaceae (CPE) poses a growing threat to global public health. However, clinically derived carbapenemase-producing Citrobacter causing multiple infections has rarely been investigated. Here we first report the isolation and comparative genomics of two blaNDM-5 carrying Citrobacter freundii (C. freundii) isolates from a patient with bloodstream and urinary tract infections. RESULTS: Antimicrobial susceptibility testing showed that both blaNDM-5 carrying C. freundii isolates were multidrug-resistant. Positive modified carbapenem inactivation method (mCIM) and EDTA-carbapenem inactivation method (eCIM) results suggested metallo-carbapenemase production. PCR and sequencing confirmed that both metallo-carbapenemase producers were blaNDM-5 positive. Genotyping and comparative genomics analyses revealed that both isolates exhibited a high level of genetic similarity. Plasmid analysis confirmed that the blaNDM-5 resistance gene is located on IncX3 plasmid with a length of 46,161 bp, and could successfully be transferred to the recipient Escherichia coli EC600 strain. A conserved structure sequence (ISAba125-IS5-blaNDM-5-trpF-IS26-umuD-ISKox3) was found in the upstream and downstream of the blaNDM-5 gene. CONCLUSIONS: The data presented in this study showed that the conjugative blaNDM-5 plasmid possesses a certain ability to horizontal transfer. The dissemination of NDM-5-producing C. freundii isolates should be of close concern in future clinical surveillance. To our knowledge, this is the first study to characterize C. freundii strains carrying the blaNDM-5 gene from one single patient with multiple infections.


Subject(s)
Carbapenems , Citrobacter freundii , Humans , Citrobacter freundii/genetics , Chromosome Mapping , Conserved Sequence , Carbapenems/pharmacology , Carbapenems/therapeutic use , Escherichia coli , Genomics
9.
Clin Microbiol Infect ; 29(10): 1336.e1-1336.e8, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37423426

ABSTRACT

OBJECTIVES: The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major clinical concern, and polymyxin B (PMB) is a 'last resort' antibiotic for its treatment. Understanding the effects of drug susceptibility transformation in CRKP-infected patients undergoing PMB treatment would be beneficial to optimize PMB treatment strategies. METHODS: We retrospectively collected data from patients infected with CRKP and treated with PMB from January 2018 to December 2020. CRKPs were collected before and after PMB therapy, and patients were classified into the 'transformation' group (TG) and 'non-transformation' group (NTG) by the shift of susceptibility to PMB. We compared clinical characteristics between these groups, and further analysed the phenotypic and genome variation of CRKP after PMB susceptibility transformation. RESULTS: A total of 160 patients (37 in the TG and 123 in the NTG) were included in this study. The duration of PMB treatment before PMB-resistant K. pneumoniae (PRKP) appearance in TG was even longer than the whole duration of PMB treatment in NTG (8 [8] vs. 7 [6] days; p 0.0496). Compared with isogenic PMB-susceptible K. pneumoniae (PSKP), most PRKP strains had missense mutations in mgrB (12 isolates), yciC (10 isolates) and pmrB (7 isolates). The competition index of 82.4% (28/34) of PRKP/PSKP pairs was <67.6% (23/34), and 73.5% (25/34) of PRKP strains showed a higher 7-day lethality in Galleria mellonella and a greater ability to resist complement-dependent killing than their corresponding PSKP, respectively. CONCLUSION: Low dose with longer PMB treatment durations may be associated with the emergence of polymyxin resistance. The evolution of PRKP is predominantly mediated by an accumulation of mutations, including those in mgrB, yciC, and pmrB. Lastly, PRKP exhibited reduced growth and increased virulence compared with parental PSKP.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Polymyxin B/pharmacology , Polymyxin B/therapeutic use , Klebsiella pneumoniae , Retrospective Studies , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Microbial Sensitivity Tests
10.
Water Res ; 242: 120263, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37390655

ABSTRACT

The increasing prevalence of infections caused by carbapenem-resistant hypervirulent Klebsiella pneumoniae strains (CR-hvKP) prompts the question of whether these strains also circulate outside of clinical settings. However, the environmental occurrence and dissemination of CR-hvKP are poorly studied. In the current study, we investigated the epidemiological characteristics, and dissemination dynamics of carbapenem-resistant K. pneumoniae (CRKP) isolated from a hospital, an urban wastewater treatment plant (WWTP), and adjacent rivers in Eastern China during one year of monitoring. A total of 101 CRKP were isolated, 54 were determined to be CR-hvKP harboring pLVPK-like virulence plasmids, which were isolated from the hospital (29 out of 51), WWTP (23 out of 46), and rivers (2 out of 4), respectively. The period with lowest detection rate of CR-hvKP in the WWTP, August, corresponded with the lowest detection rate at the hospital. Comparing the inlet and outlet of the WWTP, no significant reduction of the detection of CR-hvKP and relative abundance of carbapenem resistance genes was observed. The detection rate of CR-hvKP and the relative abundance of carbapenemase genes were significantly higher in the WWTP in colder months compared to warmer months. Clonal dissemination of CR-hvKP clones of ST11-KL64 between the hospital and the aquatic environment, as well as the horizontal spread of IncFII-IncR and IncC plasmids carrying carbapenemase genes, was observed. Furthermore, phylogenetic analysis showed that the ST11-KL64 CR-hvKP strain has spread nationally by interregional transmission. These results indicated transmission of CR-hvKP clones between hospital and urban aquatic environments, prompting the need for improved wastewater disinfection and epidemiological models to predict the public health hazard from prevalence data of CR-hvKP.


Subject(s)
Hospitals , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Phylogeny , Public Health , Carbapenems/pharmacology , Anti-Bacterial Agents
11.
Front Microbiol ; 14: 1074612, 2023.
Article in English | MEDLINE | ID: mdl-37378293

ABSTRACT

Purpose: To explore the genetic characteristics of the IMP-4, NDM-1, OXA-1, and KPC-2 co-producing multidrug-resistant (MDR) clinical isolate, Citrobacter freundii wang9. Methods: MALDI-TOF MS was used for species identification. PCR and Sanger sequencing analysis were used to identify resistance genes. In addition to agar dilution, broth microdilution was used for antimicrobial susceptibility testing (AST). We performed whole genome sequencing (WGS) of the strains and analyzed the resulting data for drug resistance genes and plasmids. Phylogenetic trees were constructed with maximum likelihood, plotted using MAGA X, and decorated by iTOL. Results: Citrobacter freundii carrying blaKPC-2, blaIMP-4, blaOXA-1, and blaNDM-1 are resistant to most antibiotics, intermediate to tigecycline, and only sensitive to polymyxin B, amikacin, and fosfomycin. The blaIMP-4 coexists with the blaNDM-1 and the blaOXA-1 on a novel transferable plasmid variant pwang9-1, located on the integron In1337, transposon TnAS3, and integron In2054, respectively. The gene cassette sequence of integron In1337 is IntI1-blaIMP-4-qacG2-aacA4'-catB3Δ, while the gene cassette sequence of In2054 is IntI1-aacA4cr-blaOXA-1-catB3-arr3-qacEΔ1-sul1. The blaNDM-1 is located on the transposon TnAS3, and its sequence is IS91-sul-ISAba14-aph (3')-VI-IS30-blaNDM-1-ble-trpF-dsbD-IS91. The blaKPC-2 is located on the transposon Tn2 of plasmid pwang9-1, and its sequence is klcA-korC-ISkpn6-blaKPC-2-ISkpn27-tnpR-tnpA. Phylogenetic analysis showed that most of the 34\u00B0C. freundii isolates from China were divided into three clusters. Among them, wang1 and wang9 belong to the same cluster as two strains of C. freundii from environmental samples from Zhejiang. Conclusion: We found C. freundii carrying blaIMP-4, blaNDM-1, blaOXA-1, and blaKPC-2 for the first time, and conducted in-depth research on its drug resistance mechanism, molecular transfer mechanism and epidemiology. In particular, we found that blaIMP-4, blaOXA-1, and blaNDM-1 coexisted on a new transferable hybrid plasmid that carried many drug resistance genes and insertion sequences. The plasmid may capture more resistance genes, raising our concern about the emergence of new resistance strains.

12.
Sci Total Environ ; 882: 163600, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37086987

ABSTRACT

MCR-positive Escherichia coli (MCRPEC) have been reported in humans worldwide. The high prevalence of mcr-1 poses clinical and environmental risks due to its diverse genetic mechanisms. Given the vital role of animals and the environment in the spread of antibiotic resistance, a "One Health" perspective should be taken when addressing antimicrobial resistance issues. This study conducted a prospective study in six farms (located in Jiaxing City, Zhejiang province, China) in 2019. MCRPEC strains were screened from samples of different sources. The molecular epidemiological surveys and transmission potential were investigated by whole-genome sequencing and phylogenetic analysis. MCRPEC were detected in different farms with various sources. Sequence type complex 10 was dominant and distributed widely in multiple sources. Core-genome multilocus sequence type (cgMLST) analysis indicated that clonal transmission could occur within and between farms. In addition, mcr-1 genes with different locations showed different transmission tendencies. The study indicated that interspecies and cross-regional transmission of MCRPEC could occur between different sectors in farms. Further surveillance and research of non-clinical MCRPEC strains are necessary to reduce the threat of MCRPEC.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Animals , Colistin , Escherichia coli , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Phylogeny , Prospective Studies , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests , Plasmids
13.
Ann Clin Microbiol Antimicrob ; 22(1): 31, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120531

ABSTRACT

BACKGROUND: Despite the global prevalence of Klebsiella pneumoniae Carbapenemase (KPC)-type class A ß-lactamases, occurrences of KPC-3-producing isolates in China remain infrequent. This study aims to explore the emergence, antibiotic resistance profiles, and plasmid characteristics of blaKPC-3-carrying Pseudomonas aeruginosa. METHODS: Species identification was performed by MALDI-TOF-MS, and antimicrobial resistance genes (ARGs) were identified by polymerase chain reaction (PCR). The characteristics of the target strain were detected by whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST). Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis(S1-PFGE), Southern blotting and transconjugation experiment. RESULTS: Five P. aeruginosa strains carrying blaKPC-3 were isolated from two Chinese patients without a history of travelling to endemic areas. All strains belonged to the novel sequence type ST1076. The blaKPC-3 was carried on a 395-kb IncP-2 megaplasmid with a conserved structure (IS6100-ISKpn27-blaKPC-3-ISKpn6-korC-klcA), and this genetic sequence was identical to many plasmid-encoded KPC of Pseudomonas species. By further analyzing the genetic context, it was supposed that the original of blaKPC-3 in our work was a series of mutation of blaKPC-2. CONCLUSIONS: The emergence of a multidrug resistance IncP-2 megaplasmid and clonal transmission of blaKPC-3-producing P. aeruginosa in China underlined the crucial need for continuous monitoring of blaKPC-3 for prevention and control of its further dissemination in China.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Pseudomonas aeruginosa/genetics , Multilocus Sequence Typing , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics , China/epidemiology , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/epidemiology
14.
Microbiol Spectr ; 11(1): e0110722, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36622219

ABSTRACT

Carbapenem-resistant Enterobacteriaceae, especially carbapenemase-producing Klebsiella pneumoniae, is an urgent problem in health care facilities worldwide. K. pneumoniae isolates classified as sequence type 11 (ST11) are largely responsible for the spread of carbapenem-resistant K. pneumoniae (CRKP) in China. Our previous phylogenetic reconstruction suggested that CRKP ST11 capsular locus 64 (KL64) was derived from an ST11-KL47 ancestor through recombination. However, the molecular origin of KL64 remains largely unknown, and our understanding of the recombination is incomplete. Here, we screened a global sample of 22,600 K. pneumoniae genomes and searched for KL64-harboring STs, which were found to be ST1764, ST3685, ST1764-1LV, ST30, ST505, ST147, and ST11, wherein ST1764, ST3685, ST1764-1LV, and ST30 belonged to a clonal complex, CC1764. We compared the genetic structures of representative strains from ST11-KL47, ST11-KL64, CC1764-KL64, ST505-KL64, and ST147-KL64 and further performed phylogenetic analysis and single-nucleotide polymorphism analysis among 248 isolates from all these STs. The results suggested a recombination event has occurred in a homologous ~154-kb region covering KL and the lipopolysaccharide biosynthesis locus (OL) between a recipient ST11-KL47-OL101 and a donor CC1764 (except ST30), giving rise to ST11-KL64-O2v1 strains (recombination I). Furthermore, we also found an infrequent ST11-KL64-O2v1 subclone which was not produced by recombination I but was hybridized from ST11-KL47-OL101 and ST147-KL64-O2v1 strains through recombination of a homologous ~485-kb region covering KL and OL (recombination II). Our findings provide important insights into the role of recombination in the evolution of clinical strains and the diversity of capsule and lipopolysaccharide of widely distributed KPC-associated ST11 K. pneumoniae in China. IMPORTANCE Chromosomal recombination events are considered to contribute to the genetic diversification and ultimate success of many bacterial pathogens. A previous study unravelled the molecular evolution history of ST258 strains, which have been largely responsible for the spread of KPC in the United States. Here, we used comparative genomic analyses to discover two recombination events in ST11 CRKP strains, which is a predominant KPC-associated CRKP clone in China. Two new ST11-CRKP subclones with altered capsule and lipopolysaccharide, which are two primary determinants of antigenicity and antigenic diversity among K. pneumoniae, were produced through these two recombination events, respectively. Horizontal transfer of the KL and OL appears to be a crucial element driving the molecular evolution of K. pneumoniae strains. These findings not only extend our understanding of the molecular evolutionary history of ST11 but also are an important step toward the development of preventive, diagnostic, and therapeutic strategies for CRKP.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Klebsiella pneumoniae , Carbapenem-Resistant Enterobacteriaceae/genetics , Phylogeny , Lipopolysaccharides , Carbapenems/therapeutic use , China/epidemiology , Klebsiella Infections/microbiology , Recombination, Genetic , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/genetics
15.
Virulence ; 14(1): 233-245, 2023 12.
Article in English | MEDLINE | ID: mdl-36529894

ABSTRACT

Emerging mobile colistin resistance (mcr) genes pose a significant threat to public health for colistin was used as the last resort to treat multidrug-resistant (MDR) pathogenic bacterial infections. Hypervirulent Klebsiella pneumoniae (hvKP) is a clinically significant pathogen resulting in highly invasive infections, often complicated by devastating dissemination. Worryingly, the untreatable and severe infections caused by mcr-harbouring hvKP leave the selection of antibiotics for clinical anti-infective treatment in a dilemma. Herein, we screened 3,461 isolates from a tertiary teaching hospital from November 2018 to March 2021, and an mcr-8.2-harbouring hvKP FAHZZU2591 with a conjugative plasmid was identified from paediatric sepsis. This is the first report of MCR-8-producing hvKP from paediatric sepsis to our best knowledge. The susceptibility, genetic features, and plasmid profiles of the isolate were investigated. Further, we assessed the virulence potential of FAHZZU2591 and verified its pathogenicity and invasive capacity using a mouse model. The phylogenetic analysis of mcr-8-bearing K. pneumoniae revealed that China is the predominant reservoir of the mcr-8 gene, and the clinic is the primary source. Our work highlights the risk for the spread of mcr-positive hvKP in clinical, especially in paediatric sepsis, and the persistent surveillance of colistin-resistance hvKP is urgent.


Subject(s)
Klebsiella Infections , Sepsis , Humans , Colistin/pharmacology , Klebsiella pneumoniae , Phylogeny , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Plasmids/genetics , Genomics , Klebsiella Infections/microbiology
16.
Front Microbiol ; 13: 980191, 2022.
Article in English | MEDLINE | ID: mdl-36338063

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) seriously threaten the efficacy of modern medicine with a high associated mortality rate and unprecedented transmission rate. In this study, we isolated a clinical K. pneumoniae strain DY1928 harboring bla NDM-1 from a neonate with blood infection. Antimicrobial susceptibility testing indicated that DY1928 was resistant to various antimicrobial agents, including meropenem, imipenem, ceftriaxone, cefotaxime, ceftazidime, cefepime, piperacillin-tazobactam, and amoxicillin-clavulanate. S1 nuclease-pulsed field gel electrophoresis (S1-PFGE), southern blot and conjugation experiment revealed that the bla NDM-1 gene was located on a conjugative plasmid of IncA/C2 type with a 147.9 kb length. Whole-genome sequencing showed that there was a conservative structure sequence (bla NDM-1-ble-trpF-dsbD) located downstream of the bla NDM-1 gene. Multilocus sequence typing (MLST) classified DY1928 as ST25, which was a hypervirulent K. pneumoniae type. Phylogenetic analysis of genomic data from all ST25 K. pneumoniae strains available in the NCBI database suggested that all bla NDM-1 positive strains were isolated in China and had clinical origins. A mouse bloodstream infection model was constructed to test the virulence of DY1928, and 11 K. pneumoniae strains homologous to DY1928 were isolated from the feces of infected mice. Moreover, we found that DY1928 had a tendency to flow from the blood into the intestine in mice and caused multiple organ damage. To our knowledge, this is the first study to report an infection caused by bla NDM-1-positive ST25 K. pneumoniae in the neonatal unit. Our findings indicated that stricter surveillance and more effective actions were needed to reduce the risk of disseminating such K. pneumoniae strains in clinical settings, especially in neonatal wards.

17.
Front Cell Infect Microbiol ; 12: 998578, 2022.
Article in English | MEDLINE | ID: mdl-36389152

ABSTRACT

Purpose: To explore the genetic characteristics of the IMP-4 and SFO-1 co-producing multidrug-resistant (MDR) clinical isolates, Enterobacter hormaechei YQ13422hy and YQ13530hy. Methods: MALDI-TOF MS was used for species identification. Antibiotic resistance genes (ARGs) were tested by PCR and Sanger sequencing analysis. In addition to agar dilution, broth microdilution was used for antimicrobial susceptibility testing (AST). Whole-genome sequencing (WGS) analysis was conducted using the Illumina NovaSeq 6000 and Oxford Nanopore platforms. Annotation was performed by RAST on the genome. The phylogenetic tree was achieved using kSNP3.0. Plasmid characterization was conducted using S1-pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and whole genome sequencing (WGS). An in-depth study of the conjugation module was conducted using the OriTFinder website. The genetic context of bla IMP-4 and bla SFO-1 was analyzed using BLAST Ring Image Generator (BRIG) and Easyfig 2.3. Results: YQ13422hy and YQ13530hy, two MDR strains of ST51 E. hormaechei harboring bla IMP-4 and bla SFO-1, were identified. They were only sensitive to meropenem, amikacin and polymyxin B, and were resistant to cephalosporins, aztreonam, piperacillin/tazobactam and aminoglycosides, intermediate to imipenem. The genetic context surrounding bla IMP-4 was 5'CS-hin-1-IS26-IntI1-bla IMP-4-IS6100-ecoRII. The integron of bla IMP-4 is In823, which is the array of gene cassettes of 5'CS-bla IMP-4. Phylogenetic analysis demonstrated that E. hormaechei YQ13422hy and YQ13530hy belonged to the same small clusters with a high degree of homology. Conclusion: This observation revealed the dissemination of the bla IMP-4 gene in E. hormaechei in China. We found that bla IMP-4 and bla SFO-1 co-exist in MDR clinical E. hormaechei isolates. This work showed a transferable IncN-type plasmid carrying the bla IMP-4 resistance gene in E. hormaechei. We examined the potential resistance mechanisms of pYQ13422-IMP-4 and pYQ13422-SFO-1, along with their detailed genetic contexts.


Subject(s)
Enterobacter , beta-Lactamases , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Enterobacter/genetics , Phylogeny
18.
Front Cell Infect Microbiol ; 12: 1028267, 2022.
Article in English | MEDLINE | ID: mdl-36439215

ABSTRACT

Diets rich in fiber may provide health benefits and regulate the gut microbiome, which affects the immune system. However, the role of dietary fiber in Clostridioides difficile infection (CDI) is controversial. Here, we investigated the use of fermentable fibers, such as inulin or pectin, to replace the insoluble fiber cellulose to explore how dietary fiber affects C. difficile-induced colitis in mice through intestinal microecology and metabolomics. Using C. difficile VPI 10463, we generated a mouse model of antibiotic-induced CDI. We evaluated disease outcomes and the microbial community among mice fed two fermentable fibers (inulin or pectin) versus the insoluble fiber cellulose. We analyzed and compared the gut microbiota, intestinal epithelium, cytokine levels, immune responses, and metabolites between the groups. Severe histological injury and elevated cytokine levels were observed in colon tissues after infection. Different diets showed different effects, and pectin administration protected intestinal epithelial permeability. Pectin also steadily increased the diversity of the microbiome and decreased the levels of C. difficile-induced markers of inflammation in serum and colonic tissues. The pectin group showed a higher abundance of Lachnospiraceae and a lower abundance of the conditionally pathogenic Enterobacteriaceae than the cellulose group with infection. The concentration of short-chain fatty acids in the cecal contents was also higher in the pectin group than in the cellulose group. Pectin exerted its effects through the aryl hydrocarbon receptor (AhR) pathway, which was confirmed by using the AhR agonist FICZ and the inhibitor CH2223191. Our results show that pectin alters the microbiome and metabolic function and triggers a protective immune response.


Subject(s)
Clostridioides difficile , Clostridium Infections , Enterocolitis, Pseudomembranous , Mice , Animals , Dietary Fiber , Inulin , Disease Models, Animal , Pectins , Cellulose , Cytokines
19.
Emerg Microbes Infect ; 11(1): 2590-2599, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36197077

ABSTRACT

Elizabethkingia anophelis is an emerging species and has increasingly been reported to cause life-threatening infections and even outbreaks in humans. Nevertheless, there is little data regarding the E. anophelis geographical distribution, phylogenetic structure, and transmission across the globe, especially in Asia. We utilize whole-genome sequencing (WGS) data to define a global population framework, phylogenetic structure, geographical distribution, and transmission evaluation of E. anophelis pathogens. The geographical distribution diagram revealed the emerging pathogenic bacteria already distributed in various countries worldwide, especially in the USA and China. Strikingly, phylogenetic analysis showed a part of our China original E. anophelis shared the same ancestor with the USA outbreak strain, which implies the possibility of localized outbreaks and global spread. These closer related strains also contained ICEEaI, which might insert into a disrupted DNA repair mutY gene and made the strain more liable to mutation and outbreak infection. BEAST analysis showed that the most recent common ancestor for ICEEaI E. anophelis was dated twelve years ago, and China might be the most likely recent source of this bacteria. Our study sheds light on the potential possibility of E. anophelis causing the large-scale outbreak and rapid global dissemination. Continued genomic surveillance of the dynamics of E. anophelis populations will generate further knowledge for optimizing future prevent global outbreak infections.


Subject(s)
Flavobacteriaceae Infections , Metagenomics , Humans , Phylogeny , Genome, Bacterial , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/microbiology , Disease Outbreaks
20.
Front Microbiol ; 13: 1020500, 2022.
Article in English | MEDLINE | ID: mdl-36312943

ABSTRACT

The worldwide spread of carbapenem-resistant Enterobacteriaceae (CRE) has led to a major challenge to human health. In this case, colistin is often used to treat the infection caused by CRE. However, the coexistence of genes conferring resistance to carbapenem and colistin is of great concern. In this work, we reported the coexistence of bla OXA-181, bla CTX-M-55, and mcr-8 in an ST273 Klebsiella pneumoniae isolate for the first time. The species identification was performed using MALDI-TOF MS, and the presence of various antimicrobial resistance genes (ARGs) and virulence genes were detected by PCR and whole-genome sequencing. Antimicrobial susceptibility testing showed that K. pneumoniae 5589 was resistant to aztreonam, imipenem, meropenem, ceftriaxone, cefotaxime, ceftazidime, levofloxacin, ciprofloxacin, gentamicin, piperacillin-tazobactam, cefepime, and polymyxin B, but sensitive to amikacin. S1-pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed the mcr-8 gene was carried on a ~ 138 kb plasmid with a conserved structure (IS903B-ymoA-inhA-mcr-8-copR-baeS-dgkA-ampC). In addition, bla OXA-181 was found on another ~51 kb plasmid with a composite transposon flanked by insertion sequence IS26. The in vitro conjugation experiments and plasmid sequence probe indicated that the plasmid p5589-OXA-181 and the p5589-mcr-8 were conjugative, which may contribute to the propagation of ARGs. Relevant detection and investigation measures should be taken to control the prevalence of pathogens coharboring bla OXA-181, bla CTX-M-55 and mcr-8.

SELECTION OF CITATIONS
SEARCH DETAIL
...