Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Monit ; 25: 4362-4369, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31185006

ABSTRACT

BACKGROUND Ischemia-reperfusion (I/R) leads to kidney injury. Renal I/R frequently occurs in kidney transplantations and acute kidney injuries. Recent studies reported that miR-30 stimulated immune responses and reductions in renal I/R related to anti-inflammation. Our study investigated the effects of miR-30c-5p on renal I/R and the relationship among miR-30c-5p, renal I/R, and macrophages. MATERIAL AND METHODS Sprague Dawley rats received intravenous tail injections of miR-30c-5p agomir. Then a renal I/R model were established by removing the left kidney and clamping the right renal artery. Serum creatinine (Cr) was analyzed using a serum Cr assay kit, and serum neutrophil gelatinase associated lipocalin (NGAL) was measured using a NGAL ELISA (enzyme-linked immunosorbent assay) kit. Rat kidney tissues were analyzed using hematoxylin and eosin staining. THP-1 cells treated with miR-30c-5p agomir and miR-30c-5p antagomir were measured with quantitative reverse transcription-polymerase chain reaction. Protein levels were analyzed by western blot. RESULTS MiR-30c-5p agomir reduced serum Cr, serum NGAL, and renal I/R injury. MiR-30c-5p agomir inhibited the expression of CD86 (M1 macrophage marker), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-alpha) and promoted the expression of CD206 (M2 macrophage marker), interleukin (IL)-4, and IL-10 in rat kidneys. MiR-30c-5p agomir reduced the expression of CD86 and iNOS, and increased the expression of CD206 and IL-10 in THP-1 cells. CONCLUSIONS We preliminarily demonstrated that miR-30c-5p agomir might decrease renal I/R through transformation of M1 macrophages to M2 macrophages and resulted in changes in inflammatory cytokines.


Subject(s)
Acute Kidney Injury/blood , Macrophages/metabolism , MicroRNAs/blood , Reperfusion Injury/blood , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Creatine/blood , Humans , Inflammation/blood , Kidney/blood supply , Kidney/pathology , Lipocalin-2/blood , Macrophages/pathology , Male , MicroRNAs/genetics , Nitric Oxide Synthase Type II/blood , Rats , Rats, Sprague-Dawley , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , THP-1 Cells , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...