Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Sensors (Basel) ; 18(7)2018 Jul 07.
Article in English | MEDLINE | ID: mdl-29986513

ABSTRACT

Generic modeling and analysis of a slow-light enhanced absorption spectroscopic gas sensor was proposed, using a mode-tuned, hollow-core, photonic band-gap fiber (HC-PBF) as an absorption gas cell. Mode characteristics of the un-infiltrated and infiltrated HC-PBF and gas absorption enhancement of the infiltrated HC-PBF were analyzed. A general rule of microfluidic parameters for targeting different gas species in the near-infrared was obtained. Ammonia (NH3) was used as an example to explore the effects of slow light on gas detection. The second harmonic (2f) signal and Allan deviation were theoretically investigated based on the derived formulations.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(1): 20-6, 2016 Jan.
Article in Chinese | MEDLINE | ID: mdl-27228733

ABSTRACT

A methane (CH4) detection system based on tunable diode laser absorption spectroscopy (TDLAS) technique was experimentally demonstrated. A distributed feedback (DFB) laser around 1 654 nm, an open reflective sensing probe and two InGaAs photodiodes were adopted in the system. The electrical part of the system mainly includes the laser temperature control & modulation module and the orthogonal lock-in amplifier module. Temperature and spectrum tests on the DFB laser indicate that, the laser temperature fluctuation can be limited to the range of -0.02-0.02 degrees C, the laser's emitting wavelength varies linearly with the temperature and injection current, and also good operation stability of the laser was observed through experiments. Under a constant working temperature, the center wavelength of the laser is varied linearly by adjusting the driving current. Meanwhile, a 5 kHz sine wave signal and a 10 Hz saw wave signal were provided by the driving circuit for the harmonic extraction purpose. The developed orthogonal lock-in amplifier can extract the If and 2f harmonic signals with the extraction error of 3.55% and 5% respectively. By using the open optical probe, the effective optical pass length was doubled to 40 cm. Gas detection experiment was performed to derive the relation between the harmonic amplitude and the gas concentration. As the concentration increases from 1% to 5%, the amplitudes of the 1f harmonic and the 2f harmonic signal were obtained, and good linear ration between the concentration and the amplitude ratio was observed, which proves the normal function of the developed detection system. This system is capable to detect other trace gases by using relevant DFB lasers.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(11): 3501-5, 2016 Nov.
Article in Chinese | MEDLINE | ID: mdl-30198654

ABSTRACT

Based on tunable diode laser absorption spectroscopy (TDLAS) technique, an acetylene (C2H2) online detection system was developed by using the absorption band at the wavelength of 1.534 µm of C2H2 molecule. The sensing system consists of four modules including a distributed feedback (DFB) laser, a DFB laser driver, a gas cell with single optical path and a data processing module. With the prepared standard C2H2 gas sample, detailed measurements were carried out to study the detection performance of the system. Experimental results reveal that, the limit of the system (LOD) is about 0.02%; a good linear relationship is observed between C2H2 gas concentration and the amplitude of the 2f signal is within the range of 0.02%~1%. A long-term measurement lasting for 20 h on a 0.5% C2H2 gas sample was carried out to test the stability of the system. Compared with the C2H2 detection systems utilizing quantum cascaded lasers (QCLs) and wideband incandescence, this system has great advantage due to the capability of using long-distance and low-loss optical fiber for remote monitoring. With self-developed DFB laser driver and lock-in amplifier, the system has good prospects in industrial field because of its simple structure, low price and capability of easy to be integrated.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(10): 2839-44, 2014 Oct.
Article in Chinese | MEDLINE | ID: mdl-25739235

ABSTRACT

Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 µm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(10): 2851-7, 2014 Oct.
Article in Chinese | MEDLINE | ID: mdl-25739237

ABSTRACT

In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(11): 2515-9, 2008 Nov.
Article in Chinese | MEDLINE | ID: mdl-19271479

ABSTRACT

There has been considerable interest recently in methane sensor based on infrared absorption spectroscopy for industrial detection and environment monitoring. The present paper presents the intensites of methane mid-infrared fundamental absorption bands, near-infrared combination band of v2 + 2v3 and overtone band of 2v3, and it was found that the absorption strengths of fundamental bands are two orders of magnitude higher than those of overtone bands and three orders of magnitude higher than those of the combinations. Theoretically, mid-infrared detection system is much better. However, because the near-infrared source and detector are more maturely developed and cheaper, near-infrared technology is widely used. Furthermore, the near-infrared radiation can be transmitted through ordinary low-loss silica fiber, suitable for long-distance methane sensing system, meeting the needs of industrial mining and other aspects. But with the development of mid-infrared detector and high-power high-sensitivity devices, low priced micro sensor modules will be more and more developed. The development of optical methane sensors is reported in this paper. Several detection technologies were investigated such as differential absorption, harmonic detection, cavity spectroscopy enhancement and photoacoustic spectroscopy. The theoretical formula, sensitivity and system structure of these technologies are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...