Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 124(Pt B): 110948, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774483

ABSTRACT

OBJECTIVE: We aimed to explore the effect and mechanism of the Src inhibitor PP2 on osteoarthritis (OA) progression. METHODS: The protein expressions of Src, p-Src (y418) and p-FAK in normal and OA human chondrocytes were detected by immunofluorescence (IF) analysis. Chondrocytes from the femur and tibial plateau of 3-day-old mice were extracted and inoculated into 6-well plates. The chondrocytes were co-cultured with IL-1ß and different doses of PP2, and then the degeneration of extracellular matrix was analyzed. A mouse OA model was induced by destabilizing medial meniscectomy of the right knee. Two weeks after the operation, different doses of PP2 were injected intraperitoneally. The drug was given three times a week for 6 weeks, and then the mice were sacrificed. Histopathological, IF and immunoblotting analyses were used to detect key OA catabolic markers and protein expression and related signaling. RESULTS: The levels of Src, p-Src (y418) and p-FAK in the knee cartilage tissue of patients with OA were abnormally increased. After chondrocytes were co-treated with IL-1ß and different doses of PP2, the results showed that PP2 reduced the abnormal increase of ß-catenin, p-ß-catenin and other proteins induced by IL-1ß, and reversed the decrease of p-Smad3, aggrecan and collagen Ⅱ protein levels. Meanwhile, intraperitoneal injection of PP2 in vivo significantly reduced the degeneration of articular cartilage in the OA mouse model. CONCLUSION: Our data indicate that targeting Src with PP2 protected against cartilage destruction in an OA mouse model by inhibiting Wnt/ß-catenin and activating TGF-ß/Smad signaling, suggesting that Src may be a potential therapeutic target for OA treatment.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Mice , Animals , beta Catenin/metabolism , Wnt Signaling Pathway , Osteoarthritis/metabolism , Chondrocytes , Cartilage, Articular/pathology , Disease Models, Animal , Transforming Growth Factor beta/metabolism , Cells, Cultured
2.
Int J Bioprint ; 9(3): 692, 2023.
Article in English | MEDLINE | ID: mdl-37273987

ABSTRACT

Spinal cord injury (SCI) causes severe neural tissue damage and motor/sensory dysfunction. Since the injured spinal cord tissue has limited self-regeneration ability, several strategies, including cell therapy, drug delivery, and tissue engineering scaffold implantation, have been employed to treat SCI. However, each of these strategies fails to obtain desirable outcomes due to their respective limitations. In comparison, advanced tissue engineering scaffolds with appropriate topographical features, favorable composition, and sustained drug delivery capability can be employed to recruit endogenous neural stem cells (NSCs), induce neuronal differentiation, and facilitate neuron maturation. This can lead to the regeneration of injured spinal cord tissue and the recovery of motor function. In this study, fiber bundle-reinforced spinal cord extracellular matrix hydrogel scaffolds loaded with oxymatrine (OMT) were produced through nearfield direct write electrospinning. The spinal cord extracellular matrix-based hydrogel was then coated with OMT. The physical/chemical properties and in vitro degradation behavior of the composite scaffolds were investigated. The in vitro cell culture results showed that composite scaffolds loaded with OMT promoted the differentiation of NSCs into neurons and inhibited differentiation into astrocytes. The in vivo results showed that the composite scaffolds loaded with OMT recruited NSCs from the host tissue, promoted neuronal differentiation and axon extension at the lesion site, inhibited glial scar formation at/around the lesion site, and improved the recovery of motor function in rats with SCI. To sum up, 3D-printed microfiber-reinforced spinal cord extracellular matrix hydrogel scaffolds loaded with OMT are promising biomaterials for the treatment of SCI.

3.
Bioact Mater ; 24: 331-345, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36632504

ABSTRACT

Spinal cord injury (SCI) is an overwhelming and incurable disabling condition, for which increasing forms of multifunctional biomaterials are being tested, but with limited progression. The promising material should be able to fill SCI-induced cavities and direct the growth of new neurons, with effective drug loading to improve the local micro-organism environment and promote neural tissue regeneration. In this study, a double crosslinked biomimetic composite hydrogel comprised of acellularized spinal cord matrix (ASCM) and gelatin-acrylated-ß-cyclodextrin-polyethene glycol diacrylate (designated G-CD-PEGDA) hydrogel, loaded with WAY-316606 to activate canonical Wnt/ß-catenin signaling, and reinforced by a bundle of three-dimensionally printed aligned polycaprolactone (PCL) microfibers, was constructed. The G-CD-PEGDA component endowed the composite hydrogel with a dynamic structure with a self-healing capability which enabled cell migration, while the ASCM component promoted neural cell affinity and proliferation. The diffusion of WAY-316606 could recruit endogenous neural stem cells and improve neuronal differentiation. The aligned PCL microfibers guided neurite elongation in the longitudinal direction. Animal behavior studies further showed that the composite hydrogel could significantly recover the motor function of rats after SCI. This study provides a proficient approach to produce a multifunctional system with desirable physiological, chemical, and topographical cues for treating patients with SCI.

4.
Int Immunopharmacol ; 112: 109225, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36095950

ABSTRACT

Osteoarthritis (OA) is the most prevalent degenerative whole-joint disease characterized by cartilage degeneration, synovial hyperplasia, osteophyte formation, and subchondral bone sclerosis. Currently there are no disease-modifying treatments available for OA because its etiology and pathogenesis are largely unknown. Here we report that a natural carboxylic polyether ionophore that is used as an anti-tumor drug, salinomycin (SAL), may be a promising therapeutic drug for OA in the future. We found that SAL showed no cytotoxicity on mouse chondrocytes and displayed a protective effect against interleukin-1ß (IL-1ß), in cultured mouse chondrocytes and cartilage explants. Treatment with low SAL concentrations directly upregulated the anabolism factors collagen II and aggrecan, while it inhibited the catabolic factors matrix metalloproteinase-13 (MMP13) and metalloproteinase with thrombospondin motifs-5 (ADAMTS5) to protect against extracellular matrix (ECM) degradation, and also suppressed inflammatory responses in mouse chondrocytes. Furthermore, SAL reduced the severity of OA-associated changes and delayed cartilage destruction, subchondral bone sclerosis, and osteophyte formation in a destabilized medial meniscus (DMM) surgery-induced mouse OA model. Mechanistically, a low SAL concentration induced anabolism and inhibited catabolism in chondrocytes via inhibiting Lrp6 phosphorylation and Wnt/ß-catenin signaling. Our results suggested that SAL may serve as a potential disease-modifying therapeutic against OA pathogenesis.


Subject(s)
Osteoarthritis , Osteophyte , Wnt Signaling Pathway , Animals , Mice , Aggrecans/metabolism , beta Catenin/metabolism , Cartilage, Articular/pathology , Cells, Cultured , Chondrocytes , Disease Models, Animal , Interleukin-1beta/metabolism , Ionophores/metabolism , Ionophores/pharmacology , Ionophores/therapeutic use , Matrix Metalloproteinase 13/metabolism , Menisci, Tibial/pathology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteophyte/metabolism , Osteophyte/pathology , Sclerosis/metabolism , Sclerosis/pathology , Thrombospondins/metabolism , Thrombospondins/pharmacology , Thrombospondins/therapeutic use
5.
Int J Bioprint ; 7(4): 405, 2021.
Article in English | MEDLINE | ID: mdl-34805594

ABSTRACT

The rapid development of scaffold-based bone tissue engineering strongly relies on the fabrication of advanced scaffolds and the use of newly discovered functional drugs. As the creation of new drugs and their clinical approval often cost a long time and billions of U.S. dollars, producing scaffolds loaded with repositioned conventional drugs whose biosafety has been verified clinically to treat critical-sized bone defect has gained increasing attention. Carfilzomib (CFZ), an approved clinical proteasome inhibitor with a much fewer side effects, is used to replace bortezomib to treat multiple myeloma. It is also reported that CFZ could enhance the activity of alkaline phosphatase and increase the expression of osteogenic transcription factors. With the above consideration, in this study, a porous CFZ/ß-tricalcium phosphate/poly lactic-co-glycolic acid scaffold (designated as "cytidine triphosphate [CTP]") was produced through cryogenic three-dimensional (3D) printing. The hierarchically porous CTP scaffolds were mechanically similar to human cancellous bone and can provide a sustained CFZ release. The implantation of CTP scaffolds into critical-sized rabbit radius bone defects improved the growth of new blood vessels and significantly promoted new bone formation. To the best of our knowledge, this is the first work that shows that CFZ-loaded scaffolds could treat nonunion of bone defect by promoting osteogenesis and angiogenesis while inhibiting osteoclastogenesis, through the activation of the Wnt/ß-catenin signaling. Our results suggest that the loading of repositioned drugs with effective osteogenesis capability in advanced bone tissue engineering scaffold is a promising way to treat critical-sized defects of a long bone.

6.
Int J Bioprint ; 7(1): 317, 2021.
Article in English | MEDLINE | ID: mdl-33585714

ABSTRACT

In this study, a ß-tricalcium phosphate (ß-TCP)/poly (lactic-co-glycolic acid) (PLGA) bone tissue scaffold was loaded with osteogenesis-promoting drug HA15 and constructed by three-dimensional (3D) printing technology. This drug delivery system with favorable biomechanical properties, bone conduction function, and local release of osteogenic drugs could provide the basis for the treatment of bone defects. The biomechanical properties of the scaffold were investigated by compressive testing, showing comparable biomechanical properties with cancellous bone tissue. Furthermore, the microstructure, pore morphology, and condition were studied. Moreover, the drug release concentration, the effect of anti-tuberculosis drugs in vitro and in rabbit radial defects, and the ability of the scaffold to repair the defects were studied. The results show that the scaffold loaded with HA15 can promote cell differentiation into osteoblasts in vitro, targeting HSPA5. The micro-computed tomography scans showed that after 12 weeks of scaffold implantation, the defect of the rabbit radius was repaired and the peripheral blood vessels were regenerated. Thus, HA15 can target HSPA5 to inhibit endoplasmic reticulum stress which finally leads to promotion of osteogenesis, bone regeneration, and angiogenesis in the rabbit bone defect model. Overall, the 3D-printed ß-TCP/PLGA-loaded HA15 bone tissue scaffold can be used as a substitute material for the treatment of bone defects because of its unique biomechanical properties and bone conductivity.

7.
Front Bioeng Biotechnol ; 9: 748151, 2021.
Article in English | MEDLINE | ID: mdl-35118053

ABSTRACT

Avascular necrosis of femoral head (ANFH) is a disease that is characterized by structural changes and collapse of the femoral head. The exact causes of ANFH are not yet clear, but small advances in etiopathogenesis, diagnosis and treatment are achieved. In this study, ß-tricalcium phosphate/poly lactic-co-glycolic acid composite scaffolds incorporated with bisperoxovanadium [bpV (pic)] (bPTCP) was fabricated through cryogenic 3D printing and were utilized to treat rat models with early ANFH, which were constructed by alcohol gavage for 6 months. The physical properties of bPTCP scaffolds and in vitro bpV (pic) release from the scaffolds were assessed. It was found that the sustained release of bpV (pic) promoted osteogenic differentiation and inhibited adipose differentiation of bone marrow-derived mesenchymal stem cells. Micro-computed tomography scanning and histological analysis confirmed that the progression of ANFH in rats was notably alleviated in bPTCP scaffolds. Moreover, it was noted that the bPTCP scaffolds inhibited phosphatase and tensin homolog and activated the mechanistic target of rapamycin signaling. The autophagy induced by bPTCP scaffolds could partially prevent apoptosis, promote osteogenesis and angiogenesis, and hence eventually prevent the progression of ANFH, suggesting that the bPTCP scaffold are promising candidate to treat ANFH.

8.
Cell ; 181(3): 621-636.e22, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32259487

ABSTRACT

Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase ß-TrCP and blocks its interaction with phosphorylated ß-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.


Subject(s)
Intracellular Space/genetics , RNA, Long Noncoding/metabolism , Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Cells, Cultured , Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , RNA Splicing/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Stem Cells/pathology
9.
Mol Cell ; 64(3): 534-548, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27871485

ABSTRACT

We identify a type of polycistronic transcript-derived long noncoding RNAs (lncRNAs) that are 5' small nucleolar RNA (snoRNA) capped and 3' polyadenylated (SPAs). SPA processing is associated with nascent mRNA 3' processing and kinetic competition between XRN2 trimming and Pol II elongation. Following cleavage/polyadenylation of its upstream gene, the downstream uncapped pre-SPA is trimmed by XRN2 until this exonuclease reaches the co-transcriptionally assembled snoRNP. This snoRNP complex prevents further degradation, generates a snoRNA 5' end, and allows continuous Pol II elongation. The imprinted 15q11-q13 encodes two SPAs that are deleted in Prader-Willi syndrome (PWS) patients. These lncRNAs form a nuclear accumulation that is enriched in RNA binding proteins (RBPs) including TDP43, RBFOX2, and hnRNP M. Generation of a human PWS cellular model by depleting these lncRNAs results in altered patterns of RBPs binding and alternative splicing. Together, these results expand the diversity of lncRNAs and provide additional insights into PWS pathogenesis.


Subject(s)
Base Sequence , Prader-Willi Syndrome/genetics , RNA, Long Noncoding/genetics , RNA, Small Nucleolar/genetics , Sequence Deletion , Transcription, Genetic , Alternative Splicing , Chromosomes, Human, Pair 15 , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Genetic Loci , Genomic Imprinting , Heterogeneous-Nuclear Ribonucleoprotein Group M/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group M/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Humans , Prader-Willi Syndrome/metabolism , Prader-Willi Syndrome/pathology , Protein Binding , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Long Noncoding/metabolism , RNA, Small Nucleolar/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
10.
Brain Inform ; 3(1): 17-27, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27747596

ABSTRACT

In this review paper, we summarized the automated dementia identification algorithms in the literature from a pattern classification perspective. Since most of those algorithms consist of both feature extraction and classification, we provide a survey on three categories of feature extraction methods, including the voxel-, vertex- and ROI-based ones, and four categories of classifiers, including the linear discriminant analysis, Bayes classifiers, support vector machines, and artificial neural networks. We also compare the reported performance of many recently published dementia identification algorithms. Our comparison shows that many algorithms can differentiate the Alzheimer's disease (AD) from elderly normal with a largely satisfying accuracy, whereas distinguishing the mild cognitive impairment from AD or elderly normal still remains a major challenge.

11.
J Biol Chem ; 289(19): 13026-41, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24692553

ABSTRACT

In addition to the classical nuclear receptor pathway, there is a nongenomic pathway in the cell membrane that regulates gene expression in animal steroid hormone signaling; however, this mechanism is unclear. Here, we report that the insect steroid hormone 20-hydroxyecdysone (20E) regulates calcium influx via phospholipase Cγ1 (PLCG1) to modulate the protein kinase C phosphorylation of the transcription factor ultraspiracle (USP1) in the lepidopteran insect Helicoverpa armigera. The PLCG1 mRNA levels are increased during the molting and metamorphic stages. The depletion of PLCG1 by RNA interference can block 20E-enhanced pupation, cause larvae death and pupation defects, and repress 20E-induced gene expression. 20E may induce the tyrosine phosphorylation of PLCG1 at the cytosolic tyrosine kinase (Src) homology 2 domains and then determine the migration of PLCG1 toward the plasma membrane. The G-protein-coupled receptor (GPCR) inhibitor suramin, Src family kinase inhibitor PP2, and the depletions of ecdysone-responsible GPCR (ErGPCR) and Gαq restrain the 20E-induced tyrosine phosphorylation of PLCG1. PLCG1 participates in the 20E-induced Ca(2+) influx. The inhibition of GPCR, PLC, inositol 1,4,5-trisphosphate receptor, and calcium channels represses the 20E-induced Ca(2+) influx. Through calcium signaling, PLCG1 mediates the transcriptional activation driven by the ecdysone-response element. Through PLCG1 and calcium signaling, 20E regulates PKC phosphorylation of USP1 at Ser-21 to determine its ecdysone-response element binding activity. These results suggest that 20E activates PLCG1 via the ErGPCR and Src family kinases to regulate Ca(2+) influx and PKC phosphorylation of USP1 to subsequently modulate gene transcription for metamorphosis.


Subject(s)
Calcium Signaling/physiology , Ecdysterone/metabolism , Insect Proteins/metabolism , Moths/metabolism , Phospholipase C gamma/metabolism , Receptors, Steroid/metabolism , Animals , Antinematodal Agents/pharmacology , Base Sequence , Calcium Signaling/drug effects , Cell Membrane/genetics , Cell Membrane/metabolism , Ecdysterone/genetics , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/physiology , Insect Proteins/genetics , Molecular Sequence Data , Moths/genetics , Phospholipase C gamma/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Steroid/genetics , Suramin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...