Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622339

ABSTRACT

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Subject(s)
Coffea , Coffea/genetics , Coffee , Genome, Plant/genetics , Metagenomics , Plant Breeding
2.
J Cancer ; 15(9): 2866-2879, 2024.
Article in English | MEDLINE | ID: mdl-38577604

ABSTRACT

Objective: To investigate the role of neutrophils in colon cancer progression. Methods: Genetic data from 1,273 patients with colon cancer were procured from public databases and categorized based on genes linked to neutrophils through an unsupervised clustering approach. Through univariate Cox regression analysis, differentially expressed genes (DEGs) influencing overall survival (OS) were identified, forming the basis for establishing a prognostic risk score (PRS) system specific to colon cancer. Additionally, the correlation between PRS and patient prognosis, immune cell infiltration, and intratumoral gene mutations were analyzed. Validation of PRS as an indicator for "pan-tumor" immunotherapy was conducted using four distinct immunotherapy cohorts. Results: The research identified two distinct subtypes of colon cancer, namely Cluster A and B, with patients in Cluster B demonstrating remarkably superior prognoses over those in Cluster A. A total of 17 genes affecting OS were screened based on 109 DEGs between the two cluster for constructing the PRS system. Notably, individuals classified under the high-PRS group (PRShigh) exhibited poorer prognoses, significantly linked with immune cell infiltration, an immunosuppressive tumor microenvironment, and increased genomic mutations. Remarkably, analysis of immunotherapy cohorts indicated that patients with PRShigh exhibited enhanced clinical responses, a higher rate of progression-free events, and improved overall survival post-immunotherapy. The PRS system, developed based on tumor typing utilizing neutrophil-associated genes, exhibited a strong correlation with prognostic elements in colon cancer and emerged as a vital predictor of "pan-tumor" immunotherapy efficacy. Conclusions: PRS serves as a prognostic model for patients with colon cancer and holds the potential to act as a "pan-tumor" universal marker for assessing immunotherapy efficacy across different tumor types. The study findings lay a foundation for novel antitumor strategies centered on neutrophil-focused approaches.

3.
Nanotechnology ; 35(21)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38368630

ABSTRACT

We observed a unique interpillar gap-related surface-enhanced Raman scattering (SERS) behavior ofp-aminothiophenol (PATP) molecules from periodic TiO2nanopillar arrays with three gap sizes of 191, 297 and 401 nm, which is completely different from that on Ag and Ni nanopillar arrays. Especially, the gap-size-dependent charge-transfer (CT) resonance enhancement from TiO2/Ni has been indicated through comparisons of variation trend of SERS intensities with inter-pillar gap size between TiO2/Ni and Ag/TiO2/Ni as well as Ni nanoarrays, and been confirmed by spectra of ultraviolet-visible absorption and photoluminescence. Results demonstrate that the CT resonance enhancement is more susceptible to the change of the gap size compared with the surface plasmon resonance (SPR) enhancement in TiO2/Ni nanoarrays. Hence, SPR and CT enhancement showing different variation trend and rate with the gap size that leads to a different relative contribution of CT resonance to the overall SERS enhancement as gap size changes, and consequently results in a unique gap-related SERS behavior for TiO2/Ni nanoarrays. The present study is not only helpful for investigating SERS mechanism for semiconductors but also providing a method to design and optimize periodic metal/semiconductor SERS substrates in a controllable way.

4.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958925

ABSTRACT

Plant basic helix-loop-helix (bHLH) transcription factors play pivotal roles in responding to stress, including cold and drought. However, it remains unclear how bHLH family genes respond to these stresses in Kandelia obovata. In this study, we identified 75 bHLH members in K. obovata, classified into 11 subfamilies and unevenly distributed across its 18 chromosomes. Collineation analysis revealed that segmental duplication primarily drove the expansion of KobHLH genes. The KobHLH promoters were enriched with elements associated with light response. Through RNA-seq, we identified several cold/drought-associated KobHLH genes. This correlated with decreased net photosynthetic rates (Pn) in the leaves of cold/drought-treated plants. Weighted gene co-expression network analysis (WGCNA) confirmed that 11 KobHLH genes were closely linked to photoinhibition in photosystem II (PS II). Among them, four Phytochrome Interacting Factors (PIFs) involved in chlorophyll metabolism were significantly down-regulated. Subcellular localization showed that KobHLH52 and KobHLH30 were located in the nucleus. Overall, we have comprehensively analyzed the KobHLH family and identified several members associated with photoinhibition under cold or drought stress, which may be helpfulfor further cold/drought-tolerance enhancement and molecular breeding through genetic engineering in K. obovata.


Subject(s)
Rhizophoraceae , Rhizophoraceae/genetics , Droughts , Stress, Physiological/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
5.
J Nanobiotechnology ; 21(1): 308, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37649022

ABSTRACT

Chronic diabetic wounds are primarily caused by infection, inflammation, and angiogenesis-related disorders. An ideal approach for treating chronic diabetic wounds is by combining anti-infection strategies, immune microenvironment regulation, and angiogenesis promotion. Vascular endothelial growth factor (VEGF) can promote the proliferation and migration of vascular endothelial cells, thereby promoting angiogenesis. However, the low stability and inability to target lesions limit its application. Polymorphonuclear neutrophil-derived exosomes (PMNExo) exhibit good delivery properties and can be used for the therapeutic delivery of VEGF. Furthermore, they retain the antibacterial ability of polymorphonuclear neutrophils (PMNs). Nonetheless, low PMNExo generation impedes its therapeutic applications. In this study, we prepared exosome mimetics (EM) from PMNs using the extrusion process; as a result, exosome yield significantly improved. To increase the residence of exosomes, an extracellular matrix (ECM) hydrogel, a thermosensitive material that can function as an in situ gel in vivo, was used as an exosome carrier. The active peptides in the ECM regulated the immune microenvironment of the wound. In summary, we loaded ECM with VEGF-encapsulated activated neutrophil exosome mimetics (aPMNEM) to develop VEGF-aPMNEM-ECM hybrid hydrogel for treating chronic wounds. The hydrogel accelerates the regeneration of chronic diabetic wounds. Our study provides a prospective therapy platform involving cytokines for treating different diseases.


Subject(s)
Diabetes Mellitus , Exosomes , Neutrophils , Vascular Endothelial Growth Factor A , Hydrogels/pharmacology , Endothelial Cells , Wound Healing , Anti-Bacterial Agents/pharmacology , Extracellular Matrix
6.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1263-1271, 2023 May.
Article in English | MEDLINE | ID: mdl-37236943

ABSTRACT

5-hydroxytryptamine (5-HT) participates in plant growth and development, and can also delay senescence and cope with abiotic stress. To explore the role of 5-HT in regulating the abilities of mangrove in cold resis-tance, we examined the effects of cold acclimation and the spraying of p-chlorophenylalanine (p-CPA, 5-HT synthesis inhibitor) on leaf gas exchange parameters and CO2 response curves (A/Ca), as well as the endogenous phytohormone content levels in the mangrove species Kandelia obovata seedlings under low temperature stress. The results showed that low temperature stress significantly reduced the contents of 5-HT, chlorophyll, endogenous auxin (IAA), gibberellin (GA), and abscisic acid (ABA). It weakened the CO2 utilization abilities of plants and reduced net photosynthetic rate, which ultimately reduced carboxylation efficiency (CE). Under low temperature stress, exogenous p-CPA reduced the contents of photosynthetic pigments, endogenous hormones, and 5-HT in the leaves, which aggravated the damages caused by low temperature stress on photosynthesis. By enhancing cold acclimation abilities, the endogenous IAA content in the leaves could was reduced under low temperature stress, promoted the production of 5-HT, improved the contents of photosynthetic pigments, GA, and ABA, as well as enhanced photosynthetic carbon assimilation abilities, which would increase photosynthesis in the K. obovata seedlings. Under cold acclimation conditions, the spraying of p-CPA could significantly inhibit the synthesis of 5-HT, promote the production of IAA, and reduce the contents of photosynthetic pigments, GA, ABA, and CE, which would weaken the effects of cold acclimation by improving the cold resistance of mangroves. In conclusion, cold acclimation could improve the cold resistance abilities of K. obovata seedlings by regulating photosynthetic carbon assimilation capacity and the contents of endogenous phytohormone. 5-HT synthesis is one of the necessary conditions for improving the cold resistance abilities of mangroves.


Subject(s)
Rhizophoraceae , Serotonin , Serotonin/pharmacology , Seedlings/physiology , Rhizophoraceae/physiology , Plant Growth Regulators/pharmacology , Carbon Dioxide , Photosynthesis/physiology , Cold Temperature , Abscisic Acid , Plant Leaves/physiology , Carbon
7.
Sci Rep ; 13(1): 6095, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055453

ABSTRACT

To reconstruct the ancestral genome of a set of phylogenetically related descendant species, we use the RACCROCHE pipeline for organizing a large number of generalized gene adjacencies into contigs and then into chromosomes. Separate reconstructions are carried out for each ancestral node of the phylogenetic tree for focal taxa. The ancestral reconstructions are monoploids; they each contain at most one member of each gene family constructed from descendants, ordered along the chromosomes. We design and implement a new computational technique for solving the problem of estimating the ancestral monoploid number of chromosomes x. This involves a "g-mer" analysis to resolve a bias due long contigs, and gap statistics to estimate x. We find that the monoploid number of all the rosid and asterid orders is [Formula: see text]. We show that this is not an artifact of our method by deriving [Formula: see text] for the metazoan ancestor.


Subject(s)
Chromosomes , Evolution, Molecular , Animals , Gene Order , Phylogeny , Chromosomes/genetics , Genome , Karyotype
8.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35886986

ABSTRACT

Common bean (Phaseolus vulgaris L.) is a food crop that is an important source of dietary proteins and carbohydrates. Marsh spot is a physiological disorder that diminishes seed quality in beans. Prior research suggested that this disease is likely caused by manganese (Mn) deficiency during seed development and that marsh spot resistance is controlled by at least four genes. In this study, genetic mapping was performed to identify quantitative trait loci (QTL) and the potential candidate genes associated with marsh spot resistance. All 138 recombinant inbred lines (RILs) from a bi-parental population were evaluated for marsh spot resistance during five years from 2015 to 2019 in sandy and heavy clay soils in Morden, Manitoba, Canada. The RILs were sequenced using a genotyping by sequencing approach. A total of 52,676 single nucleotide polymorphisms (SNPs) were identified and filtered to generate a high-quality set of 2066 SNPs for QTL mapping. A genetic map based on 1273 SNP markers distributed on 11 chromosomes and covering 1599 cm was constructed. A total of 12 stable and 4 environment-specific QTL were identified using additive effect models, and an additional two epistatic QTL interacting with two of the 16 QTL were identified using an epistasis model. Genome-wide scans of the candidate genes identified 13 metal transport-related candidate genes co-locating within six QTL regions. In particular, two QTL (QTL.3.1 and QTL.3.2) with the highest R2 values (21.8% and 24.5%, respectively) harbored several metal transport genes Phvul.003G086300, Phvul.003G092500, Phvul.003G104900, Phvul.003G099700, and Phvul.003G108900 in a large genomic region of 16.8-27.5 Mb on chromosome 3. These results advance the current understanding of the genetic mechanisms of marsh spot resistance in cranberry common bean and provide new genomic resources for use in genomics-assisted breeding and for candidate gene isolation and functional characterization.


Subject(s)
Phaseolus , Vaccinium macrocarpon , Disease Resistance/genetics , Genetic Linkage , Phaseolus/genetics , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Wetlands
9.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563347

ABSTRACT

Powdery mildew (PM), caused by the fungus Oidium lini in flax, can cause defoliation and reduce seed yield and quality. To date, one major dominant gene (Pm1) and three quantitative trait loci (QTL) on chromosomes 1, 7 and 9 have been reported for PM resistance. To fully dissect the genetic architecture of PM resistance and identify QTL, a diverse flax core collection of 372 accessions augmented with an additional 75 breeding lines were sequenced, and PM resistance was evaluated in the field for eight years (2010-2017) in Morden, Manitoba, Canada. Genome-wide association studies (GWAS) were performed using two single-locus and seven multi-locus statistical models with 247,160 single nucleotide polymorphisms (SNPs) and the phenotypes of the 447 individuals for each year separately as well as the means over years. A total of 349 quantitative trait nucleotides (QTNs) were identified, of which 44 large-effect QTNs (R2 = 10-30%) were highly stable over years. The total number of favourable alleles per accession was significantly correlated with PM resistance (r = 0.74), and genomic selection (GS) models using all identified QTNs generated significantly higher predictive ability (r = 0.93) than those constructed using the 247,160 genome-wide random SNP (r = 0.69), validating the overall reliability of the QTNs and showing the additivity of PM resistance in flax. The QTNs were clustered on the distal ends of all 15 chromosomes, especially on chromosome 5 (0.4-5.6 Mb and 9.4-16.9 Mb) and 13 (4.7-5.2 Mb). To identify candidate genes, a dataset of 3230 SNPs located in resistance gene analogues (RGAs) was used as input for GWAS, from which an additional 39 RGA-specific QTNs were identified. Overall, 269 QTN loci harboured 445 RGAs within the 200 Kb regions spanning the QTNs, including 45 QTNs located within the RGAs. These RGAs supported by significant QTN/SNP allele effects were mostly nucleotide binding site and leucine-rich repeat receptors (NLRs) belonging to either coiled-coil (CC) NLR (CNL) or toll interleukin-1 (TIR) NLR (TNL), receptor-like kinase (RLK), receptor-like protein kinase (RLP), transmembrane-coiled-coil (TM-CC), WRKY, and mildew locus O (MLO) genes. These results constitute an important genomic tool for resistance breeding and gene cloning for PM in flax.


Subject(s)
Flax , Disease Resistance/genetics , Erysiphe , Flax/genetics , Genes, Plant , Genome-Wide Association Study/methods , Genomics , Plant Breeding/methods , Plant Diseases/genetics , Plant Diseases/microbiology , Reproducibility of Results
10.
Nat Genet ; 54(1): 73-83, 2022 01.
Article in English | MEDLINE | ID: mdl-34980919

ABSTRACT

Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar 'Feizixiao' was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair of CONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.


Subject(s)
Domestication , Genome, Plant , Litchi/genetics , China , Crops, Agricultural/genetics , Evolution, Molecular , Flowers/genetics , Haplotypes , Heterozygote , Litchi/growth & development , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Species Specificity
11.
J Bioinform Comput Biol ; 19(6): 2140008, 2021 12.
Article in English | MEDLINE | ID: mdl-34806950

ABSTRACT

Using RACCROCHE, a method for reconstructing gene content and order of ancestral chromosomes from a phylogeny of extant genomes represented by the gene orders on their chromosomes, we study the evolution of three orders of woody plants. The method retrieves the monoploid complement of each Ancestor in a phylogeny, consisting a complete set of distinct chromosomes, despite some of the extant genomes being recently or historically polyploidized. The three orders are the Sapindales, the Fagales and the Malvales. All of these are independently estimated to have ancestral monoploid number [Formula: see text].


Subject(s)
Evolution, Molecular , Genome , Chromosomes , Phylogeny
12.
J Comput Biol ; 28(11): 1156-1179, 2021 11.
Article in English | MEDLINE | ID: mdl-34783601

ABSTRACT

Recurrent whole genome duplication and the ensuing loss of redundant genes-fractionation-complicate efforts to reconstruct the gene orders and chromosomes of the ancestors associated with the nodes of a phylogeny. Loss of genes disrupts the gene adjacencies key to current techniques. With our RACCROCHE pipeline, instead of starting with the inference of short ancestral segments, we suggest delaying the choice of gene adjacencies while we accumulate many more syntenically validated generalized (gapped) adjacencies. We obtain longer ancestral contigs using maximum weight matching (MWM). Similarly, we do not construct chromosomes by successively piecing together contigs into larger segments, but rather compile counts of pairwise contig co-occurrences on the set of extant genomes and use these to cluster the contigs. Chromosome-level contig assemblies for a monoploid genome emerge naturally at each node of the phylogeny and the contigs then can be ordered along the chromosome. Sampling alternative MWM solutions, visualizing heat maps, and applying gap statistics allow us to estimate the number of chromosomes in the reconstruction. We introduce several measures of quality: length of contigs, continuity of contig structure on successive ancestors, coverage of the extant genome by the reconstruction, and rearrangement relations among the inferred chromosomes. The reconstructed ancestors are visualized by painting the ancestral projections on the descendant genomes. We submit genomes drawn from a broad range of monocot orders to our pipeline, confirming the tetraploidization event "tau" in the stem lineage between the alismatids and the lilioids. We show additional applications to the Solanaceae and to four Brassica genomes, producing evidence about the monoploid ancestor in each case.


Subject(s)
Computational Biology/methods , Gene Duplication , Magnoliopsida/classification , Algorithms , Evolution, Molecular , Gene Order , Genome, Plant , Magnoliopsida/genetics , Phylogeny
13.
Interface Focus ; 11(4): 20200059, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34123351

ABSTRACT

Whole-genome doubling, tripling or replicating to a greater degree, due to fixation of polyploidization events, is attested in almost all lineages of the flowering plants, recurring in the ancestry of some plants two, three or more times in retracing their history to the earliest angiosperm. This major mechanism in plant genome evolution, which generally appears as instantaneous on the evolutionary time scale, sets in operation a compensatory process called fractionation, the loss of duplicate genes, initially rapid, but continuing at a diminishing rate over millions and tens of millions of years. We study this process by statistically comparing the distribution of duplicate gene pairs as a function of their time of creation through polyploidization, as measured by sequence similarity. The stochastic model that accounts for this distribution, though exceedingly simple, still has too many parameters to be estimated based only on the similarity distribution, while the computational procedures for compiling the distribution from annotated genomic data is heavily biased against earlier polyploidization events-syntenic 'crumble'. Other parameters, such as the size of the initial gene complement and the ploidy of the various events giving rise to duplicate gene pairs, are even more inaccessible to estimation. Here, we show how the frequency of unpaired genes, identified via their embedding in stretches of duplicate pairs, together with previously established constraints among some parameters, adds enormously to the range of successive polyploidization events that can be analysed. This also allows us to estimate the initial gene complement and to correct for the bias due to crumble. We explore the applicability of our methodology to four flowering plant genomes covering a range of different polyploidization histories.

14.
PeerJ ; 9: e11506, 2021.
Article in English | MEDLINE | ID: mdl-34141477

ABSTRACT

Sonneratia caseolaris is a native mangrove species found in China. It is fast growing and highly adaptable for mangrove afforestation, but suffered great damage by chilling event once introduced to high latitude area. To understand the response mechanisms under chilling stress, physiological and transcriptomic analyses were conducted. The relative electrolyte conductivity, malondialdehyde (MDA) content, soluble sugar content and soluble protein content increased significantly under chilling stress. This indicated that S. caseolaris suffered great damage and increased the levels of osmoprotectants in response to the chilling stress. Gene expression comparison analysis of S. caseolaris leaves after 6 h of chilling stress was performed at the transcriptional scale using RNA-Seq. A total of 168,473 unigenes and 3,706 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses showed that the DEGs were mainly involved in carbohydrate metabolism, antioxidant enzyme, plant hormone signal transduction, and transcription factors (TFs). Sixteen genes associated with carbohydrate metabolism, antioxidant enzyme, phytohormones and TFs were selected for qRT-PCR verification, and they indicated that the transcriptome data were reliable. Our work provided a comprehensive review of the chilling response of S. caseolaris at both physiological and transcriptomic levels, which will prove useful for further studies on stress-responses in mangrove plants.

15.
Genome Res ; 31(5): 799-810, 2021 05.
Article in English | MEDLINE | ID: mdl-33863805

ABSTRACT

The members of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, inferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a "mix and match" model of allopolyploidy, in which subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.


Subject(s)
Genome , Polyploidy , Evolution, Molecular , Genome, Plant , Humans , Hybridization, Genetic , Phylogeny
16.
Hortic Res ; 8(1): 37, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33574224

ABSTRACT

Betula L. (birch) is a pioneer hardwood tree species with ecological, economic, and evolutionary importance in the Northern Hemisphere. We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromosomes. The Betula genome lacks evidence of recent whole-genome duplication and has the same paleoploidy level as Vitis vinifera and Prunus mume. Phylogenetic analysis of lignin pathway genes coupled with tissue-specific expression patterns provided clues for understanding the formation of higher ratios of syringyl to guaiacyl lignin observed in Betula species. Our transcriptome analysis of leaf tissues under a time-series cold stress experiment revealed the presence of the MEKK1-MKK2-MPK4 cascade and six additional mitogen-activated protein kinases that can be linked to a gene regulatory network involving many transcription factors and cold tolerance genes. Our genomic and transcriptome analyses provide insight into the structures, features, and evolution of the B. platyphylla genome. The chromosome-level genome and gene resources of B. platyphylla obtained in this study will facilitate the identification of important and essential genes governing important traits of trees and genetic improvement of B. platyphylla.

17.
IEEE/ACM Trans Comput Biol Bioinform ; 18(5): 1875-1884, 2021.
Article in English | MEDLINE | ID: mdl-31869797

ABSTRACT

Fractionation is the genome-wide process of losing one gene per duplicate pair following whole genome doubling (WGD). An important type of evidence for duplicate gene loss is the frequency distribution of similarities between paralogous gene pairs in a genome or orthologous gene pairs in two species. We extend a previous branching process model for fractionation, originally accounting for paralog similarities, to encompass the distribution of ortholog similarities, after multiple rounds of whole genome doubling and fractionation, with the speciation event occurring at any point. We estimate the fractionation rates during all the inter-event periods in each lineage of the plant family Malvaceae. We suggest a major correction of the phylogenetic position of the durian sub-family, and discover a new triplication event in this lineage.


Subject(s)
Gene Duplication/genetics , Genome, Plant/genetics , Malvaceae/genetics , Models, Genetic , Evolution, Molecular , Genes, Duplicate , Genomics , Phylogeny
18.
Front Genet ; 11: 584817, 2020.
Article in English | MEDLINE | ID: mdl-33363568

ABSTRACT

Lumnitzera littorea (Jack) Voigt is among the most endangered mangrove species in China. The morphology and evolution of L. littorea flowers have received substantial attention for their crucial reproductive functions. However, little is known about the genomic regulation of flower development in L. littorea. In this study, we characterized the morphology of two kinds of L. littorea flowers and performed comparative analyses of transcriptome profiles of the two different flowers. Morphological observation showed that some flowers have a column embedded in the petals while others produce a stretched flower style during petal unfolding in flowering. By using RNA-seq, we obtained 138,857 transcripts that were assembled into 82,833 unigenes with a mean length of 1055.48 bp. 82,834 and 34,997 unigenes were assigned to 52 gene ontology (GO) functional groups and 364 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 4,267 differentially expressed genes (DEGs), including 1,794 transcription factors (TFs), were identified between two types of flowers. These TFs are mainly involved in bHLH, B3, bZIP, MYB-related, and NAC family members. We further validated that 12 MADS-box genes, including 4 MIKC-type and 8 M-type TFs, were associated with the pollinate of L. littorea by herkogamy. Our current results provide valuable information for genetic analysis of L. littorea flowering and may be useful for illuminating its adaptive evolutionary mechanisms.

19.
Nat Plants ; 6(8): 929-941, 2020 08.
Article in English | MEDLINE | ID: mdl-32782408

ABSTRACT

It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra, we generated two high-quality nanopore de novo genome assemblies. The N50 contig lengths for the two assemblies were 17.1 Mb (12 contigs), one of the best among 324 sequenced plant genomes, and 0.29 Mb (424 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short-read assembly corroborated genome integrity and quantified sequence-related error rates (0.2%). The contiguity and coverage allowed unprecedented access to low-complexity regions of the genome. Pericentromeric regions and coincidence of hypomethylation enabled localization of active centromeres and identified centromere-associated ALE family retro-elements that appear to have proliferated through relatively recent nested transposition events (<1 Ma). Genomic distances calculated based on synteny relationships were used to define a post-triplication Brassica-specific ancestral genome, and to calculate the extensive rearrangements that define the evolutionary distance separating B. nigra from its diploid relatives.


Subject(s)
Brassica/genetics , Centromere/genetics , Genome, Plant/genetics , Mustard Plant/genetics , DNA, Plant/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing
20.
Int J Mol Sci ; 21(5)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106624

ABSTRACT

Molecular markers are one of the major factors affecting genomic prediction accuracy and the cost of genomic selection (GS). Previous studies have indicated that the use of quantitative trait loci (QTL) as markers in GS significantly increases prediction accuracy compared with genome-wide random single nucleotide polymorphism (SNP) markers. To optimize the selection of QTL markers in GS, a set of 260 lines from bi-parental populations with 17,277 genome-wide SNPs were used to evaluate the prediction accuracy for seed yield (YLD), days to maturity (DTM), iodine value (IOD), protein (PRO), oil (OIL), linoleic acid (LIO), and linolenic acid (LIN) contents. These seven traits were phenotyped over four years at two locations. Identification of quantitative trait nucleotides (QTNs) for the seven traits was performed using three types of statistical models for genome-wide association study: two SNP-based single-locus (SS), seven SNP-based multi-locus (SM), and one haplotype-block-based multi-locus (BM) models. The identified QTNs were then grouped into QTL based on haplotype blocks. For all seven traits, 133, 355, and 1,208 unique QTL were identified by SS, SM, and BM, respectively. A total of 1420 unique QTL were obtained by SS+SM+BM, ranging from 254 (OIL, LIO) to 361 (YLD) for individual traits, whereas a total of 427 unique QTL were achieved by SS+SM, ranging from 56 (YLD) to 128 (LIO). SS models alone did not identify sufficient QTL for GS. The highest prediction accuracies were obtained using single-trait QTL identified by SS+SM+BM for OIL (0.929 ± 0.016), PRO (0.893 ± 0.023), YLD (0.892 ± 0.030), and DTM (0.730 ± 0.062), and by SS+SM for LIN (0.837 ± 0.053), LIO (0.835 ± 0.049), and IOD (0.835 ± 0.041). In terms of the number of QTL markers and prediction accuracy, SS+SM outperformed other models or combinations thereof. The use of all SNPs or QTL of all seven traits significantly reduced the prediction accuracy of traits. The results further validated that QTL outperformed high-density genome-wide random markers, and demonstrated that the combined use of single and multi-locus models can effectively identify a comprehensive set of QTL that improve prediction accuracy, but further studies on detection and removal of redundant or false-positive QTL to maximize prediction accuracy and minimize the number of QTL markers in GS are warranted.


Subject(s)
Flax/genetics , Genome-Wide Association Study/standards , Plant Breeding/standards , Quantitative Trait Loci , Selective Breeding , Flax/growth & development , Plant Breeding/methods , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...