Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 690124, 2021.
Article in English | MEDLINE | ID: mdl-34367213

ABSTRACT

Rice blast, caused by the fungus Magnaporthe oryzae, is the most devastating disease affecting rice production. Identification of protein-protein interactions (PPIs) is a critical step toward understanding the molecular mechanisms underlying resistance to blast fungus in rice. In this study, we presented a computational framework for predicting plant-pathogen PPIs based on structural information. Compared with the sequence-based methods, the structure-based approach showed to be more powerful in discovering new PPIs between plants and pathogens. Using the structure-based method, we generated a global PPI network consisted of 2,018 interacting protein pairs involving 1,344 rice proteins and 418 blast fungus proteins. The network analysis showed that blast resistance genes were enriched in the PPI network. The network-based prediction enabled systematic discovery of new blast resistance genes in rice. The network provided a global map to help accelerate the identification of blast resistance genes and advance our understanding of plant-pathogen interactions.

2.
Front Plant Sci ; 10: 870, 2019.
Article in English | MEDLINE | ID: mdl-31333706

ABSTRACT

Protein-protein interactions (PPIs) play fundamental roles in various cellular processes. Here, we present a new version of computational interactome that contains more than 345,000 predicted PPIs involving about 51.2% of the Arabidopsis proteins. Compared to the earlier version, the updated AraPPINet displays a higher accuracy in predicting protein interactions through performance evaluation with independent datasets. In addition to the experimental verifications of the previous version, the new version has been subjected to further validation test that demonstrates its ability to discover novel PPIs involved in hormone signaling pathways. Moreover, network analysis shows that many overlapping proteins are significantly involved in the interactions which mediated the crosstalk among plant hormones. The new version of AraPPINet provides a more reliable interactome which would facilitate the understanding of crosstalk among hormone signaling pathways in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...