Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
1.
Phys Rev Lett ; 132(24): 240801, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949366

ABSTRACT

Quantum networks promise unprecedented advantages in information processing and open up intriguing new opportunities in fundamental research, where network topology and network nonlocality fundamentally underlie these applications. Hence, the detections of network topology and nonlocality are crucial, which, however, remain an open problem. Here, we conceive and experimentally demonstrate to determine the network topology and network nonlocality hosted by a triangle quantum network comprising three parties, within and beyond Bell theorem, with a general witness operator for the first time. We anticipate that this unique approach may stimulate further studies toward the efficient characterization of large complex quantum networks so as to better harness the advantage of quantum networks for quantum information applications.

2.
Eur Spine J ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847817

ABSTRACT

BACKGROUND: Thoracic ossification of the ligamentum flavum (TOLF), a rare condition more prevalent in East Asia, is managed through open and endoscopic surgical approaches. Determining the superior surgical option remains unclear. This study assesses the safety and clinical outcomes associated with these approaches in TOLF patients. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a systematic literature search up to August 5, 2023, across PubMed, Scopus, EMBASE, Web of Science, Cochrane, and ClinicalTrials.gov. We included randomized controlled trials and cohort studies reporting complication rates, mJOA (modified Japanese Orthopedic Association) scores, JOA scores, VAS (Visual Analog Scale) scores, or hospitalization duration for both open and endoscopic surgeries in TOLF patients. RESULTS: We analyzed 37 studies encompassing 1,646 TOLF patients using a random-effects model. Our findings revealed a significant difference in complication rates (overall complication rates: 0.12; 95% CI: 0.07, 0.19; p < 0.01; I2: 69%; quality of evidence: moderate), with lower complication rates in the endoscopy group. However, no significant differences were observed in JOA scores (overall JOA: 8.35; 95% CI: 7.16, 9.54; p = 0.12; I2: 99%; quality of evidence: very low), VAS scores (overall VAS: 1.31; 95% CI: 1.03, 1.59; p = 0.35; I2: 91%; quality of evidence: very low), or hospitalization duration (hospital stay: 10.83 days; 95% CI: 6.86, 14.80; p = 0.35; I2: 91%; quality of evidence: very low) between the open and endoscopic groups. CONCLUSIONS: This meta-analysis reports lower complication rates and improved postoperative mJOA scores for endoscopic surgery in TOLF patients compared to open surgery. It represents the first comprehensive evaluation of clinical outcomes and safety of different surgical approaches for TOLF patients. Further randomized controlled trials are essential to validate these findings.

3.
Phys Rev Lett ; 132(20): 203801, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829094

ABSTRACT

Non-Hermitian systems can exhibit unique quantum phases without any Hermitian counterparts. For example, the latest theoretical studies predict a new surprising phenomenon that bulk bands can localize and dissipate prominently at the system boundary, which is dubbed the non-Hermitian edge burst effect. Here we realize a one-dimensional non-Hermitian Su-Schrieffer-Heeger lattice with bulk translation symmetry implemented with a photonic quantum walk. Employing time-resolved single-photon detection to characterize the chiral motion and boundary localization of bulk bands, we determine experimentally that the dynamics underlying the non-Hermitian edge burst effect is due to the interplay of non-Hermitian skin effect and imaginary band gap closing. This new non-Hermitian physical effect deepens our understanding of quantum dynamics in open quantum systems.

4.
J Opt Soc Am A Opt Image Sci Vis ; 41(5): 943-951, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38856580

ABSTRACT

Compared to horizontal transmission, the oceanic dissipation rate and temperature-salinity distribution ratio are no longer constant but vary with depth, imposing greater complexity on oceanic turbulence when beams propagate through a slant path and resulting in more limitations on the performance of underwater wireless optical communication (UWOC) links. This study focuses on investigating the performance, especially the auto-focusing characteristic, of auto-focusing hypergeometric Gaussian (AHGG) beams propagating along slant paths in oceanic turbulence. We theoretically derive the spatial coherence radius and the relative probability of the orbital angular momentum (OAM) mode for AHGG beams passing through such links. Numerical simulations reveal that AHGG beams exhibit superior propagation performance compared to hypergeometric Gaussian beams. Lower beam orders and OAM numbers contribute to improved performance, while careful selection of auto-focusing length can tangibly enhance detection performance as well. Additionally, tidal velocities and wind speeds have nonnegligible effects on OAM signal probability. Our results further demonstrate that surface buoyancy flux, temperature gradients, and waterside friction velocity significantly affect beam transmission under varying wind conditions. These findings, particularly controlling the auto-focusing length of AHGG beams to match the transmission distance, provide valuable insights for enhancing the quality of UWOC links.

5.
Waste Manag ; 186: 55-63, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38861772

ABSTRACT

Metal smelting and combustion of solid fuels produce significant quantities of waste slag, leading to issues such as land occupation and environmental pollution. Understanding and controlling the microscale crystallization phenomena of these slags during thermal treatment is crucial for transforming waste slags into materials suitable for carbon capture or glass ceramics. Previous research has primarily focused on macroscopic crystallization behaviors, significantly advancing the utilization of waste slags in cement clinker production. However, macroscopic results are inadequate for precisely controlling the microscale crystallization behaviors of waste slags. Here, we employed the single hot thermocouple technique to visually explore crystal growth modes, shapes, sizes, numbers, and translational rates of the crystal growth front in a representative blast furnace slag under various isothermal temperatures. The results revealed that crystals exhibited five modes as the isothermal temperature gradually increased, including equiaxed, equiaxed & columnar, columnar, columnar & planar, and planar. Moreover, the translational rate of the crystal growth front increased from 0.011 µm·s-1 to 43.7 µm·s-1 with an increase in the isothermal temperature. Simultaneously, the number of crystals decreased from around 104 to 100 µm-2. On this basis, correlations between microscale crystallization behaviors and isothermal temperature were established to fill the current gap.


Subject(s)
Crystallization , Waste Management/methods , Industrial Waste/analysis
6.
J Integr Neurosci ; 23(5): 103, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38812389

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) is a prominent cause of neonatal mortality and neurodevelopmental disorders; however, effective therapeutic interventions remain limited. During neonatal hypoxic-ischemic injury events, increased reactive oxygen species (ROS) production and decreased antioxidant levels lead to the induction of oxidative stress, which plays a pivotal role in the pathological process of neonatal HIE. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key endogenous antioxidant transcription factor that protects against oxidative stress by promoting the transcription of various antioxidant genes. It has been demonstrated that Nrf2 signaling pathway activation by different compounds may protect against neonatal HIE. This review outlines the role of oxidative stress in neonatal HIE and summarizes the impact of antioxidants on neonatal HIE via activation of the Nrf2 signaling pathway. In conclusion, Nrf2 signaling pathway potentially exerts antioxidant, anti-inflammatory, antiapoptotic and antiferroptotic effects, thereby emerging as a focal point for future neonatal HIE treatment strategies.


Subject(s)
Hypoxia-Ischemia, Brain , NF-E2-Related Factor 2 , Oxidative Stress , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Humans , NF-E2-Related Factor 2/metabolism , Infant, Newborn , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , Antioxidants/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
7.
Biotechnol Adv ; 73: 108374, 2024.
Article in English | MEDLINE | ID: mdl-38729229

ABSTRACT

Indigo is a natural dye extensively used in the global textile industry. However, the conventional synthesis of indigo using toxic compounds like aniline, formaldehyde, and hydrogen cyanide has led to environmental pollution and health risks for workers. This method also faces growing economic, sustainability, and environmental challenges. To address these issues, the concept of bio-indigo or indigo biosynthesis has been proposed as an alternative to aniline-based indigo synthesis. Among various enzymes, Flavin-containing Monooxygenases (FMOs) have shown promise in achieving a high yield of bio-indigo. However, the industrialization of indigo biosynthesis still encounters several challenges. This review focuses on the historical development of indigo biosynthesis mediated by FMOs. It highlights several factors that have hindered industrialization, including the use of unsuitable chassis (Escherichia coli), the toxicity of indole, the high cost of the substrate L-tryptophan, the water-insolubility of the product indigo, the requirement of reducing reagents such as sodium dithionite, and the relatively low yield and high cost compared to chemical synthesis. Additionally, this paper summarizes various strategies to enhance the yield of indigo synthesized by FMOs, including redundant sequence deletion, semi-rational design, cheap precursor research, NADPH regeneration, large-scale fermentation, and enhancement of water solubility of indigo.


Subject(s)
Indigo Carmine , Indigo Carmine/metabolism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Oxygenases/metabolism , Oxygenases/genetics , Coloring Agents/chemistry , Coloring Agents/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
8.
Sci Rep ; 14(1): 9589, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38670979

ABSTRACT

Lysophosphoglycerides (LPLs) have been reported to accumulate in myocardium and serve as a cause of arrhythmias in acute myocardial ischemia. However, in this study we found that LPLs level in the ventricular myocardium was decreased by the onset of acute myocardial ischemia in vivo in rats. Decreasing of LPLs level in left ventricular myocardium, but not right, was observed within 26 min of left myocardial ischemia, regardless of whether arrhythmias were triggered. Lower LPLs level in the ventricular myocardium was also observed in aconitine-simulated ventricular fibrillation (P < 0.0001) and ouabain-simulated III° atrioventricular block (P < 0.0001). Shot-lasting electric shock, e.g., ≤ 40 s, decreased LPLs level, while long-lasting, e.g., 5 min, increased it (fold change = 2.27, P = 0.0008). LPLs accumulation was observed in long-lasting myocardial ischemia, e.g., 4 h (fold change = 1.20, P = 0.0012), when caspase3 activity was elevated (P = 0.0012), indicating increased cell death, but not coincided with higher frequent arrhythmias. In postmortem human ventricular myocardium, differences of LPLs level in left ventricular myocardium was not observed among coronary artery disease- and other heart diseases-caused sudden death and non-heart disease caused death. LPLs level manifested a remarkable increasing from postmortem 12 h on in rats, thus abolishing the potential for serving as biomarkers of sudden cardiac death. Token together, in this study we found that LPLs in ventricular myocardium were initially decreased by the onset of ischemia, LPLs accumulation do not confer arrhythmogenesis during acute myocardial ischemia. It is necessary to reassess the roles of LPLs in myocardial infarction.


Subject(s)
Arrhythmias, Cardiac , Heart Ventricles , Myocardial Ischemia , Myocardium , Animals , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Rats , Male , Heart Ventricles/metabolism , Heart Ventricles/pathology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/etiology , Humans , Myocardium/metabolism , Myocardium/pathology , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/etiology , Ventricular Fibrillation/pathology , Aconitine/analogs & derivatives , Disease Models, Animal , Ouabain/pharmacology , Ouabain/metabolism
9.
Forensic Sci Int Genet ; 71: 103051, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670007

ABSTRACT

PURPOSE: Thoracic aortic dissection (TAD) is a life-threatening cardiovascular disease that often results in sudden cardiac death (SCD). However, the genetic characteristics of individuals with TAD confirmed at autopsy have been rarely studied. Our objective was to determine the prevalence of pathogenic variants in TAD-associated genes in a cohort of sporadic deaths resulting from spontaneous rupture of TAD and identify relevant genotype-phenotype relationships in Han Chinese population. METHODS: We included sixty-one consecutive sporadic decedents whose primary cause of death was spontaneous rupture of TAD, and performed a whole exome sequencing based strategy comprising 26 known TAD-associated genes. RESULTS: We identified 7 pathogenic or likely pathogenic (P/LP) variants in 7 cases (11.48 %) and 22 variants of uncertain significance (VUS) in 22 cases (36.07 %). The FBN1 gene was found to be the major disease-causing gene. Notably, TAD decedents with P/LP variant exhibited significantly earlier mortality. Moreover, we reported for the first time that TAD decedents with P/LP variant had a shorter diagnosis and treatment time. CONCLUSION: Our study investigated the genetic characteristics of TAD individuals confirmed until autopsy in Han Chinese population. The findings enhanced the understanding of the genetic underpinnings of TAD and have significant implications for clinical management and forensic investigations.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Exome Sequencing , Adult , Aged , Female , Humans , Male , Middle Aged , Adipokines , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/mortality , Aortic Dissection/genetics , Aortic Dissection/mortality , Aortic Rupture/genetics , China , Cohort Studies , Dissection, Thoracic Aorta , East Asian People/genetics , Fibrillin-1/genetics , Rupture, Spontaneous/genetics
10.
Opt Express ; 32(4): 4887-4901, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439229

ABSTRACT

In underwater wireless optical communication, orbital angular momentum (OAM) states suffer from turbulence distortions. This study aims to investigate the effectiveness of auto-focusing and OAM entanglement of the beams in reducing the turbulence effects. We implement the single-phase approximation and the extended Huygens-Fresnel principle to derive the detection probability of the entangled Airy beams under unstable oceanic turbulence. The results show that auto-focusing can protect the signal OAM mode and suppress modal crosstalks, while entangled OAM states can further enhance the resistance against oceanic turbulence around the focus position. The numerical analysis demonstrates that after the auto-focusing position, the beams evolve in completely opposite directions, indicating that the focal length should be modulated according to the length of a practical link to enhance received signals. These findings suggest that entangled auto-focusing vortex beams may be a desirable light source in underwater communication systems.

11.
Int J Nanomedicine ; 19: 1273-1285, 2024.
Article in English | MEDLINE | ID: mdl-38348176

ABSTRACT

Purpose: To investigate the inhibition of Streptococcus mutans (S.mutans) and its biofilm by AgBr-nanoparticles (NP) @CTMAB (cetyltrimethyl-ammonium bromide) and evaluate the changes in Polymethyl methacrylate (PMMA)'s surface roughness (Ra), microhardness, and flexural strength during prolonged immersion in AgBr-NP@CTMAB for application in the denture cleaning industry. Patients and Methods: The antibacterial activity of AgBr-NP@CTMAB against S.mutans was measured colony formation assay, OD600 and laser confocal microscopy. Changes in the specimens' values for surface roughness, microhardness, and flexural strength (MPa) were measured after immersion solutions for 180 or 360 days. Results: The AgBr-NP@CTMAB solution exhibited a robust antibacterial effect on planktonic S. mutans, with a minimum bactericidal concentration of 5 µg/mL. The 10 µg/mL AgBr-NP@CTMAB solution efficiently inhibited S. mutans biofilm formation. (2) No significant difference in surface roughness after immersion in AgBr-NP@CTMAB (10 µg/mL and 20 µg/mL) comparing with distilled water (P > 0.05) and Polident had significantly higher than distilled water (P < 0.05). There was a significant decrease in the surface hardness of the PMMA specimens that were immersed in the Polident compared with those in distilled water (P < 0.05). While, no significant differences in surface hardness after immersion in the AgBr-NP@CTMAB (P > 0.05). The result of flexural strength suggested that there was no statistically significant difference (P < 0.05) between AgBr-NP@CTMAB as well as Polident and water. Conclusion: AgBrNP@CTMAB can efficiently inhibit the growth of plankton S.mutans and biofilm formation, without affecting the flexural strength, microhardness, or surface roughness of PMMA. Therefore, AgBrNP@CTMAB holds promise as a new denture cleaning agent.


Subject(s)
Borates , Nanoparticles , Polymethyl Methacrylate , Sulfates , Hardness , Flexural Strength , Streptococcus mutans , Denture Bases , Water , Anti-Bacterial Agents/pharmacology , Surface Properties , Materials Testing
12.
World J Psychiatry ; 13(10): 732-742, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-38058691

ABSTRACT

BACKGROUND: Studies have shown that sleep disorders are closely related to anxiety and depression, and the quality of life (QoL) of patients with sleep disorders is generally poor. AIM: To examine the occurrence of sleep disorders in people with coronary heart disease (CHD) and their relationships with QoL, depression, and anxiety. METHODS: As per the sleep condition, 240 CHD individuals were separated into two groups: non-sleep disorder group (n = 128) and sleep disorder group (n = 112). The self-rating anxiety scale (SAS), self-rating depression scale (SDS), and World Health Organization criteria for the Quality of Life Brief scale (WHOQOL-BREF) scores of the two groups were compared. Logistic regression method was used to analyze the independent risk factors of CHD patients with sleep disorders. Multivariate logistic regression analysis was employed to develop the risk prediction model. The association among the Pittsburgh Sleep Quality Index, SAS, and SDS was examined using Spearman's correlation analysis. RESULTS: The incidence of sleep disorder was 46.67% in 240 patients. The scores of SAS and SDS in the sleep disorder group were higher than those in the non-sleep disorder group, and the WHOQOL-BREF scores were lower than those in the non-sleep disorder group (P < 0.05). The risk prediction model of sleep disturbances in CHD patients was constructed using the outcomes of multivariate logistic regression analysis, P = 1/[1 + e (-2.160 + 0.989 × (female) + 0.001 × (new rural cooperative medical insurance) + 2.219 × (anxiety) + 2.157 × depression)]. The results of a Spearman's correlation study revealed that sleep quality was strongly adversely connected with the physiological field, psychological field, and social relation scores in QoL, and was considerably positively correlated with SAS and SDS (P < 0.05). CONCLUSION: A multivariate logistic regression model can better predict the occurrence of sleep disorders in CHD patients. Sleep disorders in CHD patients are significantly correlated with QoL, depression, and anxiety.

13.
Clin Oral Investig ; 28(1): 64, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38158464

ABSTRACT

OBJECTIVES: This study aimed to investigate the functions of 19 types of Wnt ligands during the process of osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs), with particular attention to WNT3A and WNT4. MATERIALS AND METHODS: The expression levels of 19 types of Wnt ligands were examined using real-time quantitative polymerase chain reaction (real-time qPCR) during hPDLSCs osteogenic differentiation at 7, 10, and 14 days. Knockdown of WNT3A and WNT4 expression was achieved using adenovirus vectors, and conditioned medium derived from WNT3A and WNT4 overexpression plasmids was employed to investigate their roles in hPDLSCs osteogenesis. Osteogenic-specific genes were analyzed using real-time qPCR. Alkaline phosphatase (ALP) and alizarin red S activities and staining were employed to assess hPDLSCs' osteogenic differentiation ability. RESULTS: During hPDLSCs osteogenic differentiation, the expression of 19 types of Wnt ligands varied, with WNT3A and WNT4 showing significant upregulation. Inhibiting WNT3A and WNT4 expression hindered hPDLSCs' osteogenic capacity. Conditioned medium of WNT3A promoted early osteogenic differentiation, while WNT4 facilitated late osteogenesis slightly. CONCLUSION: Wnt ligands, particularly WNT3A and WNT4, play an important role in hPDLSCs' osteogenic differentiation, highlighting their potential as promoters of osteogenesis. CLINICAL RELEVANCE: Given the challenging nature of alveolar bone regeneration, therapeutic strategies that target WNT3A and WNT4 signaling pathways offer promising opportunities. Additionally, innovative gene therapy approaches aimed at regulating of WNT3A and WNT4 expression hold potential for improving alveolar bone regeneration outcomes.


Subject(s)
Osteogenesis , Periodontal Ligament , Humans , Osteogenesis/genetics , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Stem Cells , Cell Differentiation/genetics , Cells, Cultured
14.
Huan Jing Ke Xue ; 44(12): 6801-6810, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098405

ABSTRACT

Sludge biochar(BC), which was prepared by the pyrolysis of waste-activated sludge at 450℃, was applied for peroxymonosulfate(PMS) activation to construct a BC/PMS system for ciprofloxacin(CIP) degradation. The physical and chemical properties of BC were studied using scanning electron microscopy(SEM), an energy dispersive spectrometer(EDS), a Fourier transform infrared spectrometer(FTIR), X-ray diffraction(XRD), a Zeta potential analyzer, and electron paramagnetic resonance spectroscopy(EPR). The effects of BC dosage, PMS dosage, initial pH value, and inorganic anions on CIP removal in the BC/PMS system were investigated. Further, the degradation mechanism of the BC/PMS system was speculated through the free radical quenching experiment and X-ray photoelectron spectroscopy(XPS) analysis. The results showed that the CIP degradation rate was 49.09% at a BC dosage of 1.0 g·L-1, PMS of 3.0 mmol·L-1, CIP of 20 mg·L-1, and pH of 6.0 in 120 min. SO42- and NO3- had no obvious effect on the removal of CIP in the BC/PMS system, whereas HCO3- and Cl-could inhibit CIP degradation significantly. The CIP removal in the BC/PMS system was attributed to the common function of the radical pathway dominated by ·OH and SO4-· and the non-radical pathway dominated by 1O2. The CIP degradation pathway mainly included piperazine ring opening and hydroxylation reaction.


Subject(s)
Sewage , Water Pollutants, Chemical , Ciprofloxacin , Water Pollutants, Chemical/analysis , Peroxides/chemistry
15.
Phys Rev Lett ; 131(15): 150203, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37897772

ABSTRACT

Heisenberg-type measurement uncertainty relations (MURs) of two quantum observables are essential for contemporary research in quantum foundations and quantum information science. Going beyond, here we report the first experimental study of MUR of three quantum observables. We establish rigorously MURs for triplets of unbiased qubit observables as combined approximation errors lower bounded by an incompatibility measure, inspired by the proposal of Busch et al. [Phys. Rev. A 89, 012129 (2014)PLRAAN1050-294710.1103/PhysRevA.89.012129]. We develop a convex programming protocol to numerically find the exact value of the incompatibility measure and the optimal measurements. We propose a novel implementation of the optimal joint measurements and present several experimental demonstrations with a single-photon qubit. We stress that our method is universally applicable to the study of many qubit observables. Besides, we theoretically show that MURs for joint measurement can be attained by sequential measurements in two of our explored cases. We anticipate that this work may stimulate broad interests associated with Heisenberg's uncertainty principle in the case of multiple observables, enriching our understanding of quantum mechanics and inspiring innovative applications in quantum information science.

16.
Redox Biol ; 68: 102944, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890359

ABSTRACT

AIMS: Endothelial dysfunction plays a pivotal role in atherosclerosis, but the detailed mechanism remains incomplete understood. Nogo-B is an endoplasmic reticulum (ER)-localized protein mediating ER-mitochondrial morphology. We previously showed endothelial Nogo-B as a key regulator of endothelial function in the setting of hypertension. Here, we aim to further assess the role of Nogo-B in coronary atherosclerosis in ApoE-/- mice with pressure overload. METHODS AND RESULTS: We generated double knockout (DKO) mouse models of systemically or endothelium-specifically excising Nogo-A/B gene on an ApoE-/- background. After 7 weeks of transverse aortic constriction (TAC) surgery, compared to ApoE-/- mice DKO mice were resistant to the development of coronary atherosclerotic lesions and plaque rapture. Sustained elevation of Nogo-B and adhesion molecules (VCAM-1/ICAM-1), early markers of atherosclerosis, was identified in heart tissues and endothelial cells (ECs) isolated from TAC ApoE-/- mice, changes that were significantly repressed by Nogo-B deficiency. In cultured human umbilical vein endothelial cells (HUVECs) exposure to inflammatory cytokines (TNF-α, IL-1ß), Nogo-B was upregulated and activated reactive oxide species (ROS)-p38-p65 signaling axis. Mitofusin 2 (Mfn2) is a key protein tethering ER to mitochondria in ECs, and we showed that Nogo-B expression positively correlated with Mfn2 protein level. And Nogo-B deletion in ECs or in ApoE-/- mice reduced Mfn2 protein content and increased ER-mitochondria distance, reduced ER-mitochondrial Ca2+ transport and mitochondrial ROS generation, and prevented VCAM-1/ICAM-1 upregulation and EC dysfunction, eventually restrained atherosclerotic lesions development. CONCLUSION: Our study revealed that Nogo-B is a critical modulator in promoting endothelial dysfunction and consequent pathogenesis of coronary atherosclerosis in pressure overloaded hearts of ApoE-/- mice. Nogo-B may hold the promise to be a common therapeutic target in the setting of hypertension.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Hypertension , Plaque, Atherosclerotic , Humans , Animals , Mice , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Reactive Oxygen Species/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Nogo Proteins/genetics , Nogo Proteins/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Plaque, Atherosclerotic/metabolism , Oxidative Stress , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Endothelium/metabolism , Hypertension/metabolism , Apolipoproteins E/genetics , Mice, Knockout , Mice, Inbred C57BL
17.
Huan Jing Ke Xue ; 44(10): 5511-5523, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827768

ABSTRACT

Land use can directly affect the abundance of riverine dissolved organic matter (DOM) by transporting terrestrial organic matter to rivers and can also indirectly enhance local production of DOM by increasing riverine nutrient loading. This study investigated the characteristics and spatial distribution of DOM components in the Furong River during the rainy season (July) using ultraviolet-visible light absorption spectroscopy (UV-VIS) and three-dimensional excitation emission matrix fluorescence spectroscopy-parallel factor analysis (EEM-PARAFAC) techniques. Furthermore, correlation analysis and the partial least squares path model (PLS-PM) were used to identify and quantify the direct and indirect impacts of land use on DOM at multiple scales. The results revealed that:① the direct effects of land use on DOM were generally stronger than the indirect effects. ② The responses of different DOM components to riverine nutrient status and land use varied, with dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) components being more susceptible to riverine nutrient status and fluorescent dissolved organic matter (FDOM) being more sensitive to land use. ③ The direct impact intensity of land use on DOC and CDOM fluctuated slightly with the spatial scale, but the total impact intensity had no visible spatial scale difference, and the direct impact intensity on the FDOM component decreased with the increase in spatial scale. ④ Dryland, urban and other construction land, patch density (PD), edge density (ED), and Shannon's diversity index (SHDI) were typical land use metrics that exacerbated DOM abundance, whereas paddy field, shrubland, largest patch index (LPI), and aggregation index (AI) were typical land use metrics that effectively mitigated DOM abundance. Total nitrogen (TN), nitrate nitrogen (NO3--N), and dissolved total phosphorus (DTP) were water quality parameters that were significantly affected by land use and were closely related to DOM components, that is, nitrogen and phosphorus played an important "intermediary" role in "land use-riverine DOM." FDOM could be used as indicators to measure the strength of terrestrial organic matter directly input to rivers by land use.

18.
Article in English | MEDLINE | ID: mdl-37690214

ABSTRACT

Red skin color in Plectropomus leopardus is important to its ornamental and economic value. However, the color of P. leopardus can change during the rearing process, darkening and turning black due to the influence of environmental background color. The underlying molecular mechanisms that regulate this phenomenon remain unclear. MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that play important roles in numerous biological processes, such as skin differentiation and color formation in many animals. Therefore, we performed miRNA sequencing of P. leopardus skin before (initial) and after rearing with three different background colors (white, black, and blue) using Illumina sequencing to identify candidate miRNAs that may contribute to skin color differentiation. In total, 154,271,376 clean reads were obtained, with over 92 % of them successfully mapped to the P. leopardus reference genome. The miRNA length distributions of all samples displayed peaks around a typical length of 22 nt. Within these sequences, 243 known and 287 novel miRNAs were identified. A total of 65 significantly differentially expressed miRNAs (DEMs) were identified (P < 0.05), including 40 known DEMs and 25 novel DEMs. These DEMs included novel_561, miR-141-3p, and miR-129-5p, whose target genes were primarily associated with pigmentation related processes, including tyrosine metabolism, melanogenesis, and the Wnt signaling pathway. These findings shed light on the potential roles of miRNAs in the darkening of skin color in P. leopardus, thus enhancing our understanding of the molecular mechanisms involved in skin pigmentation differentiation in this species.


Subject(s)
Bass , MicroRNAs , Animals , Skin Pigmentation/genetics , MicroRNAs/genetics , Gene Expression Profiling , Bass/genetics , Skin/metabolism , Transcriptome
19.
Front Pharmacol ; 14: 1217400, 2023.
Article in English | MEDLINE | ID: mdl-37663266

ABSTRACT

Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/ß-catenin, transforming growth factor-ß1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs.

20.
Article in English | MEDLINE | ID: mdl-37604728

ABSTRACT

Plectropomus leopardus is a valuable marine fish whose skin color is strongly affected by the background color. However, the influence of the visual sense on the skin color variation of P. leopardus remains unknown. In the present study, transcriptome analysis was used to examine the visual response mechanism under different background colors. Paraffin sections of the eyes showed that the background color caused morphological changes in the pigment cells (PCs) and outer nuclear layer (ONL) and the darkening of the iris color. The transcriptome analysis results indicated that the gene expressions in the eyes of P. leopardus were significantly different for different background colors. We identified 4845, 3069, 5874, and 6309 differentially expressed genes (DEGs) in the pairwise comparisons of white vs. initial, blue vs. initial, red vs. initial, and black vs. initial groups, respectively. Some hub genes and key pathways regulating the adaptive mechanism of P. leopardus's eyes to the background color were identified, i.e., the JAK-STAT, mTOR, and Ras signaling pathways, and the ndufb7, slc6a13, and novel.3553 gene. This adaptation was achieved through the synthesis of stress proteins and energy balance supply mediated by hub genes and key pathways. In addition, the phenylalanine metabolism, tyrosine metabolism, and actin cytoskeleton-related processes or pathways and genes were responsible for iris and skin color adaptation. In summary, we inferred that stress protein synthesis, phenylalanine metabolism, and energy homeostasis were critical stress pathways for P. leopardus to adapt its skin color to the environment. These new findings indicate that the P. leopardus skin color variation may have been caused by the environmental adaption of the eyes. The results provide new insights into the molecular mechanisms underlying the skin color adaptation of P. leopardus.


Subject(s)
Bass , Animals , Bass/physiology , Gene Expression Profiling , Skin , Phenylalanine , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...