Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 31(4): 712-728.e9, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38029756

ABSTRACT

There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.

2.
Biochem Mol Biol Educ ; 52(1): 45-57, 2024.
Article in English | MEDLINE | ID: mdl-37812038

ABSTRACT

The number of undergraduate students from underrepresented backgrounds enrolled in science and technology-related courses has increased over the past 20 years, but these students' persistence in STEM majors until graduation still lags behind the overall college population. Interventions like exposure to independent research, instruction using active learning, and connection within a scientific community have been shown to increase persistence and the development of science identity, especially for underrepresented minority students (URM), students with high financial need, and first-generation college students. However, exposure to research for introductory students can be expensive or challenging for an institution to provide and for some students to access. We designed Wintersession Research Week as a remotely taught, collaborative introduction to independent research for beginning undergraduate students, prioritizing those traditionally underrepresented in STEM (low income, first generation, and URM students). Because this program utilized graduate students as research mentors, we also provided training and mentoring to develop the next generation of science faculty. We found that the program helped undergraduate student participants to develop a scientific identity and increase confidence in their skills, and that graduate students found the experience valuable for their future teaching. We believe that elements of this program are adaptable to both virtual and in-person settings as an introduction to research, mentorship, and teaching for students and mentors.


Subject(s)
Immersion , Mentoring , Humans , Students , Mentors , Problem-Based Learning
3.
Nature ; 626(7997): 177-185, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123686

ABSTRACT

The discovery of novel structural classes of antibiotics is urgently needed to address the ongoing antibiotic resistance crisis1-9. Deep learning approaches have aided in exploring chemical spaces1,10-15; these typically use black box models and do not provide chemical insights. Here we reasoned that the chemical substructures associated with antibiotic activity learned by neural network models can be identified and used to predict structural classes of antibiotics. We tested this hypothesis by developing an explainable, substructure-based approach for the efficient, deep learning-guided exploration of chemical spaces. We determined the antibiotic activities and human cell cytotoxicity profiles of 39,312 compounds and applied ensembles of graph neural networks to predict antibiotic activity and cytotoxicity for 12,076,365 compounds. Using explainable graph algorithms, we identified substructure-based rationales for compounds with high predicted antibiotic activity and low predicted cytotoxicity. We empirically tested 283 compounds and found that compounds exhibiting antibiotic activity against Staphylococcus aureus were enriched in putative structural classes arising from rationales. Of these structural classes of compounds, one is selective against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci, evades substantial resistance, and reduces bacterial titres in mouse models of MRSA skin and systemic thigh infection. Our approach enables the deep learning-guided discovery of structural classes of antibiotics and demonstrates that machine learning models in drug discovery can be explainable, providing insights into the chemical substructures that underlie selective antibiotic activity.


Subject(s)
Anti-Bacterial Agents , Deep Learning , Drug Discovery , Animals , Humans , Mice , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/classification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Neural Networks, Computer , Algorithms , Vancomycin-Resistant Enterococci/drug effects , Disease Models, Animal , Skin/drug effects , Skin/microbiology , Drug Discovery/methods , Drug Discovery/trends
4.
Nat Aging ; 3(6): 734-750, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37142829

ABSTRACT

The accumulation of senescent cells is associated with aging, inflammation and cellular dysfunction. Senolytic drugs can alleviate age-related comorbidities by selectively killing senescent cells. Here we screened 2,352 compounds for senolytic activity in a model of etoposide-induced senescence and trained graph neural networks to predict the senolytic activities of >800,000 molecules. Our approach enriched for structurally diverse compounds with senolytic activity; of these, three drug-like compounds selectively target senescent cells across different senescence models, with more favorable medicinal chemistry properties than, and selectivity comparable to, those of a known senolytic, ABT-737. Molecular docking simulations of compound binding to several senolytic protein targets, combined with time-resolved fluorescence energy transfer experiments, indicate that these compounds act in part by inhibiting Bcl-2, a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, in aged mice and found that it significantly decreased senescent cell burden and mRNA expression of senescence-associated genes in the kidneys. Our findings underscore the promise of leveraging deep learning to discover senotherapeutics.


Subject(s)
Cellular Senescence , Senotherapeutics , Animals , Mice , Molecular Docking Simulation , Aging
5.
Mol Syst Biol ; 18(9): e11081, 2022 09.
Article in English | MEDLINE | ID: mdl-36065847

ABSTRACT

Efficient identification of drug mechanisms of action remains a challenge. Computational docking approaches have been widely used to predict drug binding targets; yet, such approaches depend on existing protein structures, and accurate structural predictions have only recently become available from AlphaFold2. Here, we combine AlphaFold2 with molecular docking simulations to predict protein-ligand interactions between 296 proteins spanning Escherichia coli's essential proteome, and 218 active antibacterial compounds and 100 inactive compounds, respectively, pointing to widespread compound and protein promiscuity. We benchmark model performance by measuring enzymatic activity for 12 essential proteins treated with each antibacterial compound. We confirm extensive promiscuity, but find that the average area under the receiver operating characteristic curve (auROC) is 0.48, indicating weak model performance. We demonstrate that rescoring of docking poses using machine learning-based approaches improves model performance, resulting in average auROCs as large as 0.63, and that ensembles of rescoring functions improve prediction accuracy and the ratio of true-positive rate to false-positive rate. This work indicates that advances in modeling protein-ligand interactions, particularly using machine learning-based approaches, are needed to better harness AlphaFold2 for drug discovery.


Subject(s)
Anti-Bacterial Agents , Benchmarking , Anti-Bacterial Agents/pharmacology , Ligands , Molecular Docking Simulation , Protein Binding , Proteins/metabolism
6.
Nat Commun ; 13(1): 2525, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534481

ABSTRACT

Antibiotic tolerance, or the ability of bacteria to survive antibiotic treatment in the absence of genetic resistance, has been linked to chronic and recurrent infections. Tolerant cells are often characterized by a low metabolic state, against which most clinically used antibiotics are ineffective. Here, we show that tolerance readily evolves against antibiotics that are strongly dependent on bacterial metabolism, but does not arise against antibiotics whose efficacy is only minimally affected by metabolic state. We identify a mechanism of tolerance evolution in E. coli involving deletion of the sodium-proton antiporter gene nhaA, which results in downregulated metabolism and upregulated stress responses. Additionally, we find that cycling of antibiotics with different metabolic dependencies interrupts evolution of tolerance in vitro, increasing the lifetime of treatment efficacy. Our work highlights the potential for limiting the occurrence and extent of tolerance by accounting for antibiotic dependencies on bacterial metabolism.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Resistance, Bacterial/genetics , Drug Tolerance/genetics , Escherichia coli/genetics
7.
Cell Chem Biol ; 27(12): 1544-1552.e3, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32916087

ABSTRACT

The vast majority of bactericidal antibiotics display poor efficacy against bacterial persisters, cells that are in a metabolically repressed state. Molecules that retain their bactericidal functions against such bacteria often display toxicity to human cells, which limits treatment options for infections caused by persisters. Here, we leverage insight into metabolism-dependent bactericidal antibiotic efficacy to design antibiotic combinations that sterilize both metabolically active and persister cells, while minimizing the antibiotic concentrations required. These rationally designed antibiotic combinations have the potential to improve treatments for chronic and recurrent infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Biofilms/drug effects , Drug Design , Drug Interactions , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests
8.
Nat Microbiol ; 4(12): 2109-2117, 2019 12.
Article in English | MEDLINE | ID: mdl-31451773

ABSTRACT

Growth rate and metabolic state of bacteria have been separately shown to affect antibiotic efficacy1-3. However, the two are interrelated as bacterial growth inherently imposes a metabolic burden4; thus, determining individual contributions from each is challenging5,6. Indeed, faster growth is often correlated with increased antibiotic efficacy7,8; however, the concurrent role of metabolism in that relationship has not been well characterized. As a result, a clear understanding of the interdependence between growth and metabolism, and their implications for antibiotic efficacy, are lacking9. Here, we measured growth and metabolism in parallel across a broad range of coupled and uncoupled conditions to determine their relative contribution to antibiotic lethality. We show that when growth and metabolism are uncoupled, antibiotic lethality uniformly depends on the bacterial metabolic state at the time of treatment, rather than growth rate. We further reveal a critical metabolic threshold below which antibiotic lethality is negligible. These findings were general for a wide range of conditions, including nine representative bactericidal drugs and a diverse range of Gram-positive and Gram-negative species (Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus). This study provides a cohesive metabolic-dependent basis for antibiotic-mediated cell death, with implications for current treatment strategies and future drug development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Viability/drug effects , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/metabolism , Microbial Sensitivity Tests , Models, Theoretical
9.
Bioorg Med Chem Lett ; 28(22): 3540-3548, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30301675

ABSTRACT

SurA is a gram-negative, periplasmic chaperone protein involved in the proper folding of outer membrane porins (OMPs), which protect bacteria against toxins in the extracellular environment by selectively regulating the passage of nutrients into the cell. Previous studies demonstrated that deletion of SurA renders bacteria more sensitive to toxins that compromise the integrity of the outer membrane. Inhibitors of SurA will perturb the folding of OMPs, leading to disruption of the outer membrane barrier and making the cell more vulnerable to toxic insults. The discovery of novel SurA inhibitors is therefore of great importance for developing alternative strategies to overcome antibiotic resistance. Our laboratory has screened over 10,000,000 compoundsin silicoby computationally docking these compounds onto the crystal structure of SurA. Through this screen and a screen of fragment compounds (molecular weight less than 250 g/mol), we found twelve commercially readily available candidate compounds that bind to the putative client binding site of SurA. We confirmed binding to SurA by developing and employing a competitive fluorescence anisotropy-based binding assay. Our results show that one of these compounds, Fmoc-ß-(2-quinolyl)-d-alanine, binds the client binding site with high micromolar affinity. Using this compound as a lead, we also discovered that Fmoc-l-tryptophan and Fmoc-l-phenylalanine, but not Fmoc-l-tyrosine, bind SurA with similar micromolar affinity. To our knowledge, this is the first report of a competitive fluorescence anisotropy assay developed for the identification of inhibitors of the chaperone SurA, and the identification of three small molecules that bind SurA at its client binding site.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/metabolism , Peptidylprolyl Isomerase/antagonists & inhibitors , Alanine/analogs & derivatives , Alanine/metabolism , Amino Acid Sequence , Binding Sites , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Fluorescence Polarization , Molecular Docking Simulation , Peptides/chemistry , Peptides/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...