Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 325: 138387, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36914007

ABSTRACT

A novel and recyclable composite material, Fe3O4/N co-doped sludge biochar (FNBC), was developed from original sludge biochar (BC) and found to have excellent stability and superior catalytic capacity during the ciprofloxacin (CIP) degradation under the action of peroxymonosulfate (PMS). In the FNBC/PMS system, an approximately complete removal of CIP was achieved within 60 min under the condition of 1.0 g/L FNBC, 3.0 mM PMS, and 20 mg/L CIP, which was about 2.08 times of that in BC/PMS system (48.01%). Besides, FNBC/PMS system could effectively remove CIP under the influence of wide pH (2.0-10.0) or inorganic ions compared with BC/PMS system. Moreover, it was found that there were radical produced under the effect of Fe element, defects, functional groups, pyridinic N and pyrrolic N and non-radical caused by graphitic N, carbon atoms next to the iron atoms and better adsorption capacity in the FNBC/PMS system. It was observed that the contribution of hydroxyl radical (•OH), sulfate radical (SO4•-) and singlet oxygen (1O2), which were the main reactive oxygen species, during the CIP degradation, were 75.80%, 11.49% and 10.26%, respectively. Furthermore, total organic carbon (TOC) variation was analyzed and the degradation pathway of CIP was speculated. The application of this material could combine the recycling of sludge with the effective degradation of refractory organic pollutant, providing an environmentally friendly and economic method.


Subject(s)
Ciprofloxacin , Sewage , Peroxides , Carbon , Catalysis , Iron
2.
J Colloid Interface Sci ; 625: 596-605, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35764041

ABSTRACT

In this study, biochar derived from municipal sludge (SBC) was modified by CoFe-Layered double hydroxides (CoFe-LDH), and used as adsorbent and oxidant for the removal of ciprofloxacin (CIP) for the first time. Under the optimal conditions, the CIP removal rate is increased by 24% compared with the single SBC, while the removal rates of total organic carbon and total nitrogen in the modified one are increased by 24% and 27%, respectively. Mechanism investigation suggested that the specific surface area and adsorption sites of modified biochar increased, and more CIP was adsorbed to the composite surface and then oxidized by more environmental persistent free radicals contained in the CoFe-LDH@SBC, when the adsorbed CIP molecules was oxidized and degraded, the adsorption sites can be freed and thus new CIP could be adsorbed to the CoFe-LDH@SBC. In addition, the plausible degradation pathways of CIP were proposed according to high-performance liquid chromatography-mass spectrometry and density functional theory calculation. It not only reveals that CoFe-LDH@SBC has the high ability of adsorption and oxidation for CIP removal but also sheds novel insight into the application of biochar.


Subject(s)
Charcoal , Ciprofloxacin , Sewage , Water Pollutants, Chemical , Absorption, Physicochemical , Adsorption , Charcoal/chemistry , Ciprofloxacin/chemistry , Hydroxides , Sewage/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...