Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Vet Entomol ; 38(1): 59-72, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37771128

ABSTRACT

Pederin, a defensive toxin in Paederus fuscipes, is produced by an uncultured Gram-negative symbiont, which establishes a stable symbiotic relationship with a female host before completion of metamorphosis. However, the transmission process of pederin-producing bacteria (PPB) in P. fuscipes at different life stages remains unknown. Herein, the PPB population dynamics and transcriptome atlas for P. fuscipes development (egg, first-instar larva, second-instar larva, pupa, and newly emerged female and male) were characterised. We found that a microbial layer containing PPB covered the eggshell, which could be sterilised by smearing the eggshell with streptomycin. Maternal secretions over the eggshell are likely the main PPB acquisition route for P. fuscipes offspring. The PPB density in eggs was significantly higher than that in other life stages (p < 0.05), which demonstrated that the beetle mothers gave more PPB than the larvae acquired. Physiological changes (hatching and eclosion) led to a decreased PPB density in P. fuscipes. Pattern recognition receptors related to Gram-negative bacteria recognition were identified from P. fuscipes transcriptomes across various life stages, which might be used to screen genes involved in PPB regulation. These results will help advance future efforts to determine the molecular mechanisms of PPB colonisation of P. fuscipes.


Subject(s)
Coleoptera , Male , Female , Animals , Coleoptera/microbiology , Coleoptera/physiology , Bacteria/genetics , Larva , Pyrans
2.
Insect Mol Biol ; 31(4): 457-470, 2022 08.
Article in English | MEDLINE | ID: mdl-35302262

ABSTRACT

Pederin, a group of antitumor compounds, is produced by an endosymbiotic bacterium of Paederus fuscipes. Pederin content differed between male and female P. fuscipes, but the reason why these differences are maintained remains unexplored. Here, the pederin-producing bacteria (PPB) infection rate in P. fuscipes was investigated. Furthermore, we assessed the microbiota structure differences in male and female P. fuscipes harbouring PPB and sequenced the transcriptome of both sexes to shed light on genes of interest. Of the 625 analysed beetles (275 females, 350 males), 96.36% of females and 31.14% of males were positive for PPB infection. PPB accounted for 54.36%-82.70% of the bacterial population in females but showed a much lower abundance in males (0.92%-3.87%). Reproductive organs possessed the highest PPB abundance compared with other parts of females, but no such relationships existed in males. Moreover, we provide the first transcriptome analysis of male and female P. fuscipes harbouring PPB and identified 8893 differentially expressed unigenes. Our results indicated that the pederin content difference between males and females might be caused by the PPB density difference in hosts. The biosequence data would be helpful for illustrating the mechanism that regulates PPB density in P. fuscipes.


Subject(s)
Coleoptera , Microbiota , Animals , Bacteria/genetics , Coleoptera/genetics , Female , Male , Pyrans , Transcriptome
3.
Gene ; 757: 144919, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32603771

ABSTRACT

Simple sequence repeats (SSRs) represent an important source of genetic variation that provides a basis for adaptation to different environments in organisms. In this study, we examined the distribution patterns of SSRs in twenty-nine beetle genomes and carried out Gene Ontology (GO) analysis of CDSs embedded with perfect SSRs (P-SSRs). The results demonstrated that imperfect SSRs (I-SSRs) represented the most abundant SSR category in beetle genomes and in different genomic regions (CDS, exon, and intron regions). The numbers of P-SSRs, I-SSRs, compound SSRs, and variable number tandem repeats were positively correlated with beetle genome size, whereas neither the frequency nor the density of the SSRs was correlated with genome size. Moreover, our results demonstrated that common genomic features of P-SSRs within the same suborder or family of Coleoptera were rare. Mono-, di-, tri-, or tetranucleotide SSRs were the most abundant P-SSR categories in beetle genomes. The preferred predominant repeat motif among the mononucleotide P-SSRs was (A)n, but the most frequent repeat motifs for other length classes varied differentially among these genomes. Furthermore, the P-SSR type with the highest GC content differed in the beetle genomes and in different genomic regions. CV (coefficient of variability) analysis demonstrated that the repeat copy numbers of P-SSRs presented relatively higher variation in introns than in CDSs and exons. The GO terms of CDSs containing P-SSRs for molecular functions were mainly enriched in "binding" and "transcription". Our findings will be useful for studying the functional roles of microsatellite heterogeneity in beetle adaptation.


Subject(s)
Coleoptera/genetics , Genome, Insect , Microsatellite Repeats , Polymorphism, Genetic , Animals , Base Composition
SELECTION OF CITATIONS
SEARCH DETAIL
...