Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 946537, 2022.
Article in English | MEDLINE | ID: mdl-36212857

ABSTRACT

Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated. A total of 7,709 operational taxonomic units were identified by high throughput sequencing, and Actinobacteria, Proteobacteria, and Cyanobacteria were the most abundant phyla in the restored wetlands. High COD/N significantly increased bacterial diversity and was negatively correlated with N/P (R 2 = 0.128; p = 0.039), and the observed richness (Sobs) indices ranged from 860.77 to 1314.66. The corresponding Chao1 and phylogenetic diversity (PD) values ranged from 1533.42 to 2524.56 and 127.95 to 184.63. Bacterial beta diversity was negatively related to COD/N (R 2 = 0.258; p < 0.001). The distribution of bacterial assemblages was mostly driven by variations in ammonia nitrogen (NH4 +-N, p < 0.01) and electrical conductivity (EC, p < 0.01), which collectively explained more than 80% of the variation in bacterial assemblages. However, the dominant taxa Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Chloroflexi, and Deinococcus-Thermus were obviously affected by variation in COD/N and N/P (p < 0.05). The highest node and edge numbers and average degree were observed in the LH group. The co-occurrence networkindicated that LH promoted bacterial network compactness and bacterial interaction consolidation. The relationships between organic to nutrient imbalances and bacterial assemblages may provide a theoretical basis for the empirical management of wetland ecosystems.

2.
Microorganisms ; 10(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35630381

ABSTRACT

Rhizoplane microbes are considered proxies for evaluating the assemblage stability of the rhizosphere in wetland ecosystems due to their roles in plant growth and ecosystem health. However, our knowledge of how microbial assemblage stability is promoted in the reed rhizosphere of wetlands undergoing recovery is limited. We investigated the assemblage stability, diversity, abundance, co-occurrence patterns, and functional characteristics of reed rhizosphere microbes in restored wetlands. The results indicated that assemblage stability significantly increased with recovery time and that the microbial assemblages were capable of resisting seasonal fluctuations after more than 20 years of restoration. The number of bacterial indicators was greater in the restoration groups with longer restoration periods. Most bacterial indicators appeared in the 30-year restoration group. However, the core taxa and keystone species of module 2 exhibited greater abundance within longer recovery periods and were well organized, with rich and diverse functions that enhanced microbial assemblage stability. Our study provides insight into the connection between the rhizosphere microbiome and recovery period and presents a useful theoretical basis for the empirical management of wetland ecosystems.

3.
J Environ Manage ; 275: 111281, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32854048

ABSTRACT

The role of Tubifex tubifex in organic matter (OM) decomposition in aquatic ecosystems has been widely studied, but considerable uncertainties exist in terms of the effect mechanism. The effect of T. tubifex on sediment OM decomposition in laboratory-scale microcosms was quantified, and possible pathways were identified. In the first 7 days of the decomposition of OM mixed in sediment, no significant effect of T. tubifex on organic matter loss (OML) was observed for both low- and high-OM treatments; meanwhile, from day 7-60, T. tubifex addition significantly improved OML from 55.0%-57.5% to 71.8%-77.7% in the low-OM treatments and from 55.5%-56.6% to 64.1%-68.7% in the high-OM treatments. The enhanced OML observed with T. tubifex was mainly due to the promoted decomposition of refractory organic components, e.g., cellulose, hemicellulose and lignin. The proportion of refractory components in the gut of T. tubifex was significantly lower than that in the sediments (p < 0.01), indicating a pathway corresponding to the ingestion and digestion of refractory components by T. tubifex. Although T. tubifex reduced the water dissolved oxygen (DO) by increasing the water chemical oxygen demand (COD), the oxygen supply was improved by T. tubifex, and this could be affected by the increase in the relative abundance of aerobic to anaerobic bacteria in the sediments. T. tubifex significantly increased the diversity of the bacterial and fungal communities in the sediments. Moreover, the community structure of bacteria and fungi was substantially different between gut and sediment. Therefore, multiple pathways of the effect of T. tubifex on OM decomposition were established, and the results have great significance for the artificial manipulation of OM circulation using T. tubifex and the restoration of damaged aquatic ecosystems.


Subject(s)
Oligochaeta , Water Pollutants, Chemical , Animals , Bacteria , Ecosystem , Geologic Sediments
SELECTION OF CITATIONS
SEARCH DETAIL
...