Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Hum Cell ; 37(3): 782-800, 2024 May.
Article in English | MEDLINE | ID: mdl-38509270

ABSTRACT

Inflammation and immune responses play important roles in cancer development and prognosis. We identified 59 upregulated inflammation- and immune-related genes (IIRGs) in clear cell renal cell carcinoma (ccRCC) from The Cancer Genome Atlas database. Among the upregulated IIRGs, nucleotide binding oligomerization domain 2 (NOD2), PYD and CARD domain (PYCARD) were also confirmed to be upregulated in the Oncomine database and in three independent GEO data sets. Tumor immune infiltration resource database analysis revealed that NOD2 and PYCARD levels were significantly positively correlated with infiltration levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells. Multivariate Cox hazards regression analysis indicated that based on clinical variables (age, gender, tumor grade, pathological TNM stage), NOD2, but not PYCARD, was an independent, unfavorable ccRCC prognostic biomarker. Functional enrichment analyses (GSEA) showed that NOD2 was involved in innate immune responses, inflammatory responses, and regulation of cytokine secretion. Meanwhile, mRNA and protein levels of NOD2 were elevated in four ccRCC cell lines (786-O, ACHN, A498 and Caki-1), and its knockdown significantly inhibited IL-8 secretion, thereby inhibiting ccRCC cell proliferation and invasion. Furthermore, results showed that miR-20b-5p targeted NOD2 to alleviate NOD2-mediated IL-8 secretion. In conclusion, NOD2 is a potential prognostic biomarker for ccRCC and the miR-20b-5p/NOD2/IL-8 axis may regulate inflammation- and immune-mediated tumorigenesis in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/genetics , Prognosis , Interleukin-8/genetics , Inflammation/genetics , Kidney Neoplasms/genetics , Biomarkers , MicroRNAs/genetics , Nod2 Signaling Adaptor Protein/genetics
2.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331323

ABSTRACT

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Humans , Male , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/etiology , Macrophages/metabolism , Mice, Inbred C57BL , Hepatocytes/metabolism , Liver/metabolism , Liver/pathology , Diet, High-Fat/adverse effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Disease Models, Animal , Autophagy-Related Protein-1 Homolog
3.
J Environ Manage ; 346: 118947, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37699289

ABSTRACT

Combined remediation technologies are increasingly being considered to uranium contaminated groundwater, such as the joint utilize of permeable reactive bio-barrier (Bio-PRB) and electrokinetic remediation (EKR). While the assessment of uranium plume evolution in the combined remediation system (CRS) have often been impeded by insufficient understanding of multi-physical field superposition. Therefore, advanced knowledge in multi-physical field coupling in groundwater flow will be crucial to the practical application of these techniques. A two-dimensional multi-physical field coupling model was constructed for predicting the uranium degradation in CRS. The study demonstrates that the coupling model is able to predict the uranium plume evolution and rapidly evaluate the performance of CRS components. The results show that field electric direction and flow field strength are the key factors that affect the retardation and remediation performance of CRS. The reverse electric field direction significantly affected the contact reaction time of uranium in the system. The uranium residence time in the reverse electric field was 3.8 d, which was significantly greater than the original electric field (2.0 d). Depending on the voltage, the reverse electric field direction was 16%-36% more efficient than the original direction. The strength of the flow field was about two orders of magnitude higher than that of the electric field, so the groundwater flow rate dominated remediation efficiency. Reducing the flow rate by 1/2 could improve the performance of the system by approximately 66%. In addition, the coupling model can be utilized to design standard CRS for real site of uranium contaminated groundwater. To meet the optimal performance, the direction of the electric field should be set opposite to the flow field. This work has successfully used a coupling model to predict uranium contaminant-plume evolution in CRS and estimate the performance of each component.

4.
Oncogene ; 42(15): 1247-1262, 2023 04.
Article in English | MEDLINE | ID: mdl-36869127

ABSTRACT

The limited success of immunotherapies targeting immune checkpoint inhibitors is largely ascribed to the lack of infiltrating CD8+ T lymphocytes. Circular RNAs (circRNAs) are a novel type of prevalent noncoding RNA that have been implicated in tumorigenesis and progression, while their roles in modulating CD8+ T cells infiltration and immunotherapy in bladder cancer have not yet been investigated. Herein, we uncover circMGA as a tumor-suppressing circRNA triggering CD8+ T cells chemoattraction and boosting the immunotherapy efficacy. Mechanistically, circMGA functions to stabilize CCL5 mRNA by interacting with HNRNPL. In turn, HNRNPL increases the stability of circMGA, forming a feedback loop that enhances the function of circMGA/HNRNPL complex. Intriguingly, therapeutic synergy between circMGA and anti-PD-1 could significantly suppress xenograft bladder cancer growth. Taken together, the results demonstrate that circMGA/HNRNPL complex may be targetable for cancer immunotherapy and the study advances our understanding of the physiological roles of circRNAs in antitumor immunity.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein L , Urinary Bladder Neoplasms , Humans , CD8-Positive T-Lymphocytes , RNA, Circular/genetics , Immunotherapy/methods , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Tumor Microenvironment/genetics
6.
Chemosphere ; 300: 134524, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398063

ABSTRACT

The groundwater in many aquifers contains elevated concentrations of iron (Fe). Although much of this Fe is from its release from water-bearing sediments under natural environmental conditions, sufficient evidence is lacking to clarify whether anthropogenic pollutants, such as dissolved organic matter (DOM), can increase this natural release. In this time series and comparative analysis study, an Fe increasing effect was verified through laboratory leaching tests. The influences of the aqueous environmental conditions, such as pH, were also investigated. DOM can promote the release of Fe from sediments and increase the concentration of Fe in groundwater. In addition, lower or higher pH and temperature can enhance the release of Fe to some extent. Higher concentrations of DOM provided a more thorough release of Fe from the sediment; additional ions such as Cu also affected Fe release. It is possible that complexation between DOM and Fe occurs through ligand dissolution and reduction, thus promoting the release of Fe. The findings indicate that DOM imported through anthropogenic activities can increase the release of Fe from aquifer sediments into groundwater, thus worsening Fe pollution in groundwater. This study explored the mechanism by which different types of DOM release Fe from aquifer sediments and investigated the factors that influence this process. The findings provide insights into the geochemical processes of Fe in the groundwater.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Dissolved Organic Matter , Geologic Sediments , Water Pollutants, Chemical/analysis
7.
Article in English | MEDLINE | ID: mdl-35329260

ABSTRACT

Heavy metals pollution in groundwater and the resulting health risks have always been an environmental research hotspot. However, the available information regarding this topic and associated methods is still limited. This study collected 98 groundwater samples from a typical agricultural area of Songnen Plain in different seasons. The pollution status and sources of ten heavy metals (As, Ba, Cd, Co, Cr (VI), Cu, Fe, Mn, Ni, Pb, and Zn) were then analyzed and compared. In addition, the human health risks assessment (HHRA) model was used to calculate human health risks caused by heavy metals in groundwater. The results revealed that heavy metals were mainly distributed in the northwest of the study area and along the upper reaches of the Lalin river and that the concentrations of heavy metals were higher during the wet season than the dry season. Industrial and agricultural activities and natural leaching are the main sources, and each kind of heavy metal may have different sources. Fe and Mn are the primary pollutants, mainly caused by the native environment and agricultural activities. The exceeding standard rates are 71.74% and 61.54%, respectively based on the Class III of Quality Standard for Groundwater of China (GB/T 14848-2017). The maximum exceeding multiple are 91.45 and 32.05, respectively. The health risks of heavy metals borne by different groups of people were as follows: child > elder > young > adult. Carcinogenic heavy metals contribute to the main risks, and the largest risks sources are Cr and As. Therefore, the government should appropriately restrict the use of pesticides and fertilizers, strictly manage the discharge of enterprises, and control man-made heavy metals from the source. In addition, centralized water supply and treatment facilities shall be established to prevent the harm of native heavy metals.


Subject(s)
Groundwater , Metals, Heavy , Water Pollutants, Chemical , Aged , Child , China , Environmental Monitoring , Environmental Pollution , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Ecotoxicol Environ Saf ; 212: 111998, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33540339

ABSTRACT

Metabolomics is an implement for testing the toxicity of antibiotics, and provides a comprehensive view of the overall response to stress; however, the connections between metabolites and biologic endpoints keep unclear in response to antibiotics. In this study, wheat seeds were exposed to tetracycline for 5 days. The results proved that tetracycline restrained growth, reduced chlorophyl and carotinoid contents and cell permeability, and increased reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. Orthogonal partial least squares (OPLS) was used to analyze the connections between metabolites and biologic endpoints, which discovered that 11 metabolic pathways were significantly affected by tetracycline, and amino acid metabolism could largely apply to root growth and ROS accumulation, while carbohydrate metabolism could have a ruling effect on tetracycline-induced cell permeability. 13 metabolites all played active roles in mediating tetracycline's effects on root length, root fresh weight and cell permeability but had no significant effects on ROS levels. The majority of metabolites with passive effects on root length, root fresh weight and cell permeability had active effects on ROS levels. These results offer a view about stress reaction of wheat to tetracycline.


Subject(s)
Anti-Bacterial Agents/toxicity , Metabolic Networks and Pathways/drug effects , Soil Pollutants/toxicity , Tetracycline/toxicity , Triticum/drug effects , Least-Squares Analysis , Malondialdehyde/metabolism , Metabolomics/methods , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Triticum/growth & development , Triticum/metabolism
9.
Front Oncol ; 10: 1613, 2020.
Article in English | MEDLINE | ID: mdl-32903592

ABSTRACT

While hundreds of consistently altered autophagy-related genes (ARGs) have been identified in cancers, their prognostic value in bladder urothelial carcinoma (BUC) remains unclear. In the present study, we collected 232 ARGs from the Human Autophagy Database (HADb), and identified 37 differentially expressed ARGs in BUC based on The Cancer Genome Atlas (TCGA) database. Kaplan-Meier survival analysis based on the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed that among the 37 differentially expressed ARGs, prolyl 4-hydroxylase, beta polypeptide (P4HB), and regulator of G protein signaling 19 (RGS19) were significantly negatively correlated with overall survival (OS) and disease-free survival (DFS). Overexpression of P4HB and RGS19 in BUC was further validated using independent data sets, including those from the Oncomine and Gene Expression Omnibus (GEO) databases. cBioPortal and UALCAN analyses indicated that altered P4HB and RGS19 mRNA expression was significantly associated with mutations and clinical characteristics (nodal metastasis and cancer stage). Moreover, co-expression network analysis and gene set enrichment analysis (GSEA) predicted that the potential functions of P4HB and RGS19 are involved in the endoplasmic reticulum (ER) stress response, cytokine-mediated signaling pathway and inflammatory response. More importantly, multivariate Cox proportional hazards regression analysis demonstrated that P4HB, but not RGS19, is an independent and unfavorable BUC biomarker based on clinical characteristics (age, gender, cancer stage, and pathological TNM stage). Finally, we validated that the mRNA and protein expression levels of P4HB were upregulated in four bladder cancer cell lines (T24, J82, EJ, and SW780) and found that knockdown of P4HB dramatically inhibited the invasion and proliferation of bladder cancer cells. In summary, our study screened ARGs and identified P4HB as a biomarker that can predict the progression and prognosis of BUC and may provide a better understanding of the autophagy regulatory mechanisms involved in BUC.

10.
J Cell Mol Med ; 24(20): 11858-11873, 2020 10.
Article in English | MEDLINE | ID: mdl-32885590

ABSTRACT

The long non-coding RNA (lncRNA) SNHG1 has been shown to be implicated in the progression of multiple human carcinomas. Nevertheless, the biological functions and potential mechanism of SNHG1 in bladder cancer (BC) are uncharacterized. In the present study, SNHG1 was found to be substantially up-regulated in BC tissues and cells and was intimately correlated with the TNM stage, lymphatic invasion, metastasis and recurrence-free survival in BC patients. Down-regulation of SNHG1 dramatically attenuated the proliferation, migration and invasion of BC cells, whereas the ectopic overexpression of SNHG1 had the opposite effects in vitro. The in vivo experimental results also indicated that SNHG1 down-regulation hampered the tumour growth and metastasis of BC cells. Mechanistic investigations revealed that SNHG1 enhances HK2 expression by serving as an endogenous sponge to regulate miR-143-3p in the cytoplasm of BC cells. In the nucleus, SNHG1 could interact with EZH2 and regulate the histone methylation of the CDH1 promoter, altering the biological behaviours of BC cells. Overall, these findings elucidate an oncologic role of SNHG1 in BC and provide a new therapeutic strategy against BC.


Subject(s)
Disease Progression , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Urinary Bladder Neoplasms/genetics , Animals , Antigens, CD/genetics , Base Sequence , Cadherins/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Nucleus/metabolism , Cell Proliferation/genetics , Cytoplasm/metabolism , Epigenesis, Genetic , Female , Gene Silencing , Hexokinase/metabolism , Histones/metabolism , Humans , Lysine/metabolism , Male , Methylation , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Middle Aged , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , RNA, Long Noncoding/genetics , Transcription, Genetic , Up-Regulation/genetics , Urinary Bladder Neoplasms/pathology
11.
Cancer Lett ; 460: 139-151, 2019 09 28.
Article in English | MEDLINE | ID: mdl-31255724

ABSTRACT

Accumulating evidences suggest that circular RNAs play vital roles in human cancers. Previously, we found that circHIPK3 suppressed invasion of bladder cancer cells via sponging miR-558 and downregulating heparanase expression. In this study, we discovered that a circular RNA derived from NR3C1 (circNR3C1) was downregulated in bladder cancer tissues and cell lines according to RNA-Seq data and qRT-PCR analysis. Functionally, we found that overexpression of circNR3C1 could significantly inhibit cell cycle progression and proliferation of bladder cancer cells in vitro, as well as suppress tumor growth in vivo. Mechanistically, we demonstrated that circNR3C1 possessed four targeting sites of miR-27a-3p and could effectively sponge miR-27a-3p to suppress the expression of cyclin D1. Furthermore, we revealed that miR-27a-3p functioned as an oncogene through interacting with 5'UTR of cyclin D1 to enhance its expression, which led to promote cell cycle progression and proliferation in bladder cancer cells. Conclusively, our findings further confirm the hypothesis that circRNAs function as "microRNA sponges", and our data suggest that circNR3C1 and miR-27a-3p would be potential therapeutic targets for bladder cancer treatment.


Subject(s)
Cell Proliferation , Cyclin D1/metabolism , MicroRNAs/metabolism , RNA, Circular/metabolism , Urinary Bladder Neoplasms/metabolism , 5' Untranslated Regions , Animals , Binding Sites , Cell Cycle Checkpoints , Cell Line, Tumor , Cyclin D1/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Mice, Nude , MicroRNAs/genetics , RNA, Circular/genetics , Signal Transduction , Tumor Burden , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
12.
Environ Pollut ; 252(Pt B): 1202-1215, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31252118

ABSTRACT

Concentrations of common pollutants in groundwater continue to increase, and emerging pollutants are also increasingly found worldwide, thereby increasingly impacting human activities. In this new situation, it is necessary, albeit more difficult, to once again recognize the hydrochemical genesis of groundwater and to subsequently screen the typical pollutants. Taking the groundwater of the Songnen Plain of Northeast China as an example, the hydrochemical genesis was identified using space interpolation, characteristic element ratio and factor analysis methods based on 368 groundwater samples. Subsequently, the typical pollutants with potential impacts on the health of the local residents were screened by the index system method newly established. All the measured hydrochemical compositions show an obvious spatial variation, with a uniform hydrochemical type of HCO3-Ca in the whole area. Both the major compositions (K, Na, Ca, Mg, HCO3, Cl and SO4) and trace compositions (Fe, Mn, Cu, Zn, Pb, As, F, I and Se) are mainly protogenetic in an environment impacted by the lixiviation of groundwater in the migration process in the strata, although these compositions have been impacted by human activities to varying degrees. The mass concentration of NO3-N has exceeded most of the major compositions except for HCO3 and Ca, which means the nitrogen pollution problem is already very serious; and this problem is mainly caused by the utilization of fertilizers and the discharge of industrial wastewater and domestic sewage. Human activities have obviously disrupted the natural dynamic balance of these chemicals between the environment and the groundwater, thereby intensifying the release of F, Fe and Mn from the environment. TDS, total hardness, tri-nitrogen, F, Fe, Mn, Pb and As in some parts are found to exceed the standards of groundwater quality to varying degrees. As, Pb, Fe, NO3-N, NO2-N, Mn, F and NH4-N are finally screened as the typical pollutants.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Water Pollutants, Chemical/analysis , China , Environmental Pollutants/analysis , Fertilizers/analysis , Human Activities , Humans , Sewage/analysis , Water Quality/standards
13.
Mol Cancer ; 17(1): 144, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30285878

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are a new member of noncoding RNAs (ncRNAs) that have recently been described as key regulators of gene expression. Our previous study had identified the negative correlation between circHIPK3 and bladder cancer grade, invasion, as well as lymph node metastasis. However, the roles of circRNAs in cellular proliferation in bladder cancer remain largely unknown. METHODS: We had analyzed circRNA high-throughout sequencing from human tissues and determined bladder cancer related circRNA-3 (BCRC-3, GenBank: KU921434.1) as a new candidate circRNA derived from PSMD1 gene. The expression levels of circRNAs, mRNAs and miRNAs in human tissues and cells were detected by quantitative real-time PCR (qRT-PCR). The effects of BCRC-3 on cancer cells were explored by transfecting with plasmids in vitro and in vivo. RNA pull down assay, luciferase reporter assay and fluorescence in situ hybridization were applied to verify the interaction between BCRC-3 and microRNAs. Anticancer effects of methyl jasmonate (MJ) were measured by flow cytometry assay, western blot and qRT-PCR. RESULTS: BCRC-3 was lowly expressed in bladder cancer tissues and cell lines. Proliferation of BC cells was suppressed by ectopic expression of BCRC-3 in vitro and in vivo. Mechanistically, overexpression of BCRC-3 induced the expression of cyclin-dependent kinase inhibitor 1B (p27). Importantly, BCRC-3 could directly interact with miR-182-5p, and subsequently act as a miRNA sponge to promote the miR-182-5p-targeted 3'UTR activity of p27. Furthermore, MJ significantly increased the expression of BCRC-3, resulting in an obvious up-regulation of p27. CONCLUSIONS: BCRC-3 functions as a tumor inhibitor to suppress BC cell proliferation through miR-182-5p/p27 axis, which would be a novel target for BC therapy.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA Interference , RNA , Urinary Bladder Neoplasms/genetics , 3' Untranslated Regions , Animals , Apoptosis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cytoplasm , Female , Humans , Mice , Models, Biological , RNA Transport , RNA, Circular , Urinary Bladder Neoplasms/pathology
14.
J Huazhong Univ Sci Technolog Med Sci ; 37(6): 886-890, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29270748

ABSTRACT

Emerging evidence has indicated that circular RNAs (circRNAs) play pivotal roles in the regulation of cellular processes and are found to be aberrantly expressed in a variety of tumors. However, the clinical role of circRNAs in bladder cancer (BC) and the molecular mechanisms have yet to be fully understood. In this study, the clinical specimens were obtained and the expression level of a circRNA BCRC4 was detected by real-time PCR in both BC tissues and cell line. The circular RNA over-expression plasmid was constructed and transfected into BC cells and related cell line. The cell cycles and apoptosis were observed using inverted microscope and flow cytometry. Western blotting was used to compare the relative protein expression of groups with different treatments. It was found that circRNA BCRC4 expression was lower in BC tissues than in adjacent normal tissues. Furthermore, consequences of forced-expression of BCRC4 promoted apoptosis and inhibited viability of T24T and UMUC3 cells, and up-regulated BCRC4-increased miR-101 level, which suppressed EZH2 expression in both RNA and protein levels. In addition, gambogic acid (GA) is a promising natural anticancer compound for BC therapy, and GA treatment increased the BCRC4 expression in T24T and UMUC3 cells in a dose-dependent manner. Altogether, our findings suggest that BCRC4 functions as a tumor suppressor in BC, and mediates anticancer function, at least in part, by up-regulating the expression of miR-101. Targeting this newly identified circRNA may help us develop a novel strategy for treating human BC.


Subject(s)
Apoptosis/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Neoplasm/genetics , RNA/genetics , Urinary Bladder Neoplasms/genetics , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/metabolism , Humans , MicroRNAs/metabolism , Plasmids/chemistry , Plasmids/metabolism , RNA/agonists , RNA/metabolism , RNA, Circular , RNA, Neoplasm/metabolism , Retrospective Studies , Signal Transduction , Transfection , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Xanthones/pharmacology
15.
EMBO Rep ; 18(9): 1646-1659, 2017 09.
Article in English | MEDLINE | ID: mdl-28794202

ABSTRACT

Increasing evidences suggest that circular RNAs (circRNAs) exert crucial functions in regulating gene expression. In this study, we perform RNA-seq and identify 6,154 distinct circRNAs from human bladder cancer and normal bladder tissues. We find that hundreds of circRNAs are significantly dysregulated in human bladder cancer tissues. We further show that circHIPK3, also named bladder cancer-related circular RNA-2 (BCRC-2), is significantly down-regulated in bladder cancer tissues and cell lines, and negatively correlates with bladder cancer grade, invasion as well as lymph node metastasis, respectively. Over-expression of circHIPK3 effectively inhibits migration, invasion, and angiogenesis of bladder cancer cells in vitro and suppresses bladder cancer growth and metastasis in vivo Mechanistic studies reveal that circHIPK3 contains two critical binding sites for the microRNA miR-558 and can abundantly sponge miR-558 to suppress the expression of heparanase (HPSE). Taken together, our findings provide evidence that circRNAs act as "microRNA sponges", and suggest a new therapeutic target for the treatment of bladder cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Glucuronidase/genetics , Intracellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , RNA/genetics , Urinary Bladder Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Humans , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , RNA, Circular , RNA, Neoplasm/genetics , Sequence Analysis, RNA , Urinary Bladder Neoplasms/enzymology , Urinary Bladder Neoplasms/therapy
16.
ACS Appl Mater Interfaces ; 9(28): 23420-23427, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28636312

ABSTRACT

We combine the telomerase extension reaction and microRNA (miRNA)-induced rolling circle amplification, followed by graphene oxide (GO) and nicking enzyme-assisted signal amplification as a method to analyze telomerase and miRNA-21 in urine samples with the following merits. First, it is a binary assay and can simultaneously output double signals that correspond to the quantities of telomerase and miRNA, respectively. Second, telomerase activity is enhanced by using a DNA molecular beacon probe to inhibit the formation of G-quadruplex. Third, background noise is decreased significantly via introduction of GO. Fourth, performance tests on about 258 urine samples demonstrate that this binary assay can distinguish between urine from bladder cancer patients, those with cystitis, and normal individuals. Finally, this strategy also shows great potential in distinguishing between muscle-invasive bladder cancers and non-muscle-invasive bladder cancers. The proposed strategy will greatly contribute to clinical decision-making and individualized treatments.


Subject(s)
MicroRNAs/analysis , Proteins/analysis , G-Quadruplexes , Graphite , Humans , Telomerase , Urinary Bladder Neoplasms
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-333409

ABSTRACT

Emerging evidence has indicated that circular RNAs (circRNAs) play pivotal roles in the regulation of cellular processes and are found to be aberrantly expressed in a variety of tumors.However,the clinical role of circRNAs in bladder cancer (BC) and the molecular mechanisms have yet to be fully understood.In this study,the clinical specimens were obtained and the expression level of a circRNA BCRC4 was detected by real-time PCR in both BC tissues and cell line.The circular RNA over-expression plasmid was constructed and transfected into BC cells and related cell line.The cell cycles and apoptosis were observed using inverted microscope and flow cytometry.Western blotting was used to compare the relative protein expression of groups with different treatments.It was found that circRNA BCRC4 expression was lower in BC tissues than in adjacent normal tissues.Furthermore,consequences of fomed-expression of BCRC4 promoted apoptosis and inhibited viability of T24T and UMUC3 cells,and up-regulated BCRC4-inereased miR-101 level,which suppressed EZH2 expression in both RNA and protein levels.In addition,gambogic acid (GA) is a promising natural anticancer compound for BC therapy,and GA treatment increased the BCRC4 expression in T24T and UMUC3 cells in a dose-dependent manner.Altogether,our findings suggest that BCRC4 functions as a tumor suppressor in BC,and mediates anticancer function,at least in part,by up-regulating the expression of miR-101.Targeting this newly identified circRNA may help us develop a novel strategy for treating human BC.

18.
Anal Chem ; 87(18): 9487-93, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26287560

ABSTRACT

Telomerase is a widely used tumor biomarker for early cancer diagnosis. On the basis of the combined use of aggregation-induced emission (AIE) fluorogens and quencher, a quencher group induced high specificity strategy for detection of telomerase activity from cell extracts and cancer patients' urine specimens was creatively developed. In the absence of telomerase, fluorescence background is extremely low due to the short distance between quencher and AIE dye. In the addition of telomerase, fluorescence enhances significantly. The telomerase activity in the E-J, MCF-7, and HeLa extracts equivalent to 5-10 000 cells can be detected by this method in ∼1 h. Furthermore, the distinguishing of telomerase extracted from 38 cancer and 15 normal urine specimens confirms the reliability and practicality of this protocol. In contrast to our previous results (Anal. Chem. 2015, 87, 6822-6827), these advanced experiments obtain more remarkable specificity.


Subject(s)
Hematuria/urine , Limit of Detection , Telomerase/urine , Urinalysis/methods , Cell Line, Tumor , Fluorescent Dyes/chemistry , Hematuria/complications , Hematuria/enzymology , Humans , Spectrometry, Fluorescence , Urinary Bladder Neoplasms/complications , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/enzymology , Urinary Bladder Neoplasms/urine , p-Dimethylaminoazobenzene/analogs & derivatives , p-Dimethylaminoazobenzene/chemistry
19.
ACS Appl Mater Interfaces ; 7(30): 16813-8, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26180929

ABSTRACT

We demonstrate an ultrasensitive microRNA detection method based on an extremely simple probe with only fluorogens but without quencher groups. It avoids complex and difficult steps to accurately design the relative distance between the fluorogens and quencher groups in the probes. Furthermore, the assay could accomplish various detection limits by tuning the reaction temperature due to the different activity of exonuclease III corresponding to the diverse temperature. Specifically, 1 pM miR-21 can be detected in 40 min at 37 °C, and 10 aM (about 300 molecules in 50 µL) miR-21 could be discriminated in 7 days at 4 °C. The great specificity of the assay guarantees that the real 21 urine samples from the bladder cancer patients are successfully detected by our method.


Subject(s)
DNA Probes/chemistry , Fluorescent Dyes/chemical synthesis , MicroRNAs/urine , Spectrometry, Fluorescence/methods , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/urine , DNA Probes/genetics , Humans , MicroRNAs/genetics , Reproducibility of Results , Sensitivity and Specificity , Staining and Labeling/methods , Urinary Bladder Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...