Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(38)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38861960

ABSTRACT

Magneto-controlling micro-nano materials' motion is a promising way that enable the noncontact, remote, and nondestructive controlling of their macrostructure as well as functionalities. Here, an optical microscope with an electromagnet was constructed toin-situmonitor the magneto-controlled motion process microscopically. Taking micro-nano graphite flake (MGF) as a model system, we experimentally demonstrate the key factors that influence the magneto-controlling of materials' motion. First, the product of intensity and gradient of the magnetic field (B∇B) has been confirmed as the dominant driving force and the flipping direction of the MGFs is accordingly determined by the vector direction ofB×∇B. Second, quantitatively comparative experiments further revealed that the threshold driving force has an exponential relationship with the structural aspect ratio (b/a) of MGFs. Third, the critical magneto-driving force is found as proportional to the viscosity of the solvent. Accordingly, a dynamic model is developed that describes the flip of the diamagnetic flake under external magnetic field excitation considering the shape factor. It is shown experimentally that the model accurately predicts the flip dynamics of the flake under different magnetic field conditions. In addition, we also discovered the delay effect, multiple cycle acceleration effect, and the fatigue effects due to gas adsorption in magneto-controlled MGFs flipping. These findings can be used to achieve magneto-controlling materials' macrostructure as well as their functionalities.

2.
Nanomaterials (Basel) ; 11(12)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34947792

ABSTRACT

In this paper, the effect of atomic layer deposition-derived laminated interlayer on the interface chemistry and transport characteristics of sputtering-deposited Sm2O3/InP gate stacks have been investigated systematically. Based on X-ray photoelectron spectroscopy (XPS) measurements, it can be noted that ALD-derived Al2O3 interface passivation layer significantly prevents the appearance of substrate diffusion oxides and substantially optimizes gate dielectric performance. The leakage current experimental results confirm that the Sm2O3/Al2O3/InP stacked gate dielectric structure exhibits a lower leakage current density than the other samples, reaching a value of 2.87 × 10-6 A/cm2. In addition, conductivity analysis shows that high-quality metal oxide semiconductor capacitors based on Sm2O3/Al2O3/InP gate stacks have the lowest interfacial density of states (Dit) value of 1.05 × 1013 cm-2 eV-1. The conduction mechanisms of the InP-based MOS capacitors at low temperatures are not yet known, and to further explore the electron transport in InP-based MOS capacitors with different stacked gate dielectric structures, we placed samples for leakage current measurements at low varying temperatures (77-227 K). Based on the measurement results, Sm2O3/Al2O3/InP stacked gate dielectric is a promising candidate for InP-based metal oxide semiconductor field-effect-transistor devices (MOSFET) in the future.

3.
Nanoscale Adv ; 3(9): 2448-2465, 2021 May 04.
Article in English | MEDLINE | ID: mdl-36134167

ABSTRACT

Fluorescence analytical methods, as real time and in situ analytical approaches to target analytes, can offer advantages of high sensitivity/selectivity, great versatility, non-invasive measurement and easy transmission over long distances. However, the conventional fluorescence assay still suffers from low specificity, insufficient sensitivity, poor reliability and false-positive responses. By exploiting various metal nanoarchitectures to manipulate fluorescence, both increased fluorescence quantum yield and improved photostability can be realized. This metal nanoarchitecture-enhanced fluorescence (MEF) phenomenon has been extensively studied and used in various sensors over the past years, which greatly improved their sensing performance. Thus in this review, we primarily give a general overview of MEF based sensors from mechanisms to state-of-the-art applications in environmental assays, biological/medical analysis and diagnosis areas. Finally, their pros and cons as well as further development directions are also discussed.

4.
RSC Adv ; 11(11): 6284-6291, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-35423158

ABSTRACT

In this work, by taking commercial P25 hydrophilic titanium dioxide (TiO2) as a photocatalyst, the magnetic field effect (MFE) on the photodegradation rate of methyl orange is studied. It is found that a relatively lower magnetic field B = 0.28 T can efficiently enhance the photodegradation efficiency of commercial TiO2 by 24%. However, the photodegradation efficiency of commercial TiO2 will be suppressed slightly by 7% under a magnetic field of 0.5 T. Moreover, such MFE on the photocatalyst is dependent on the settling state of the reaction solution. Additional experiments on the degradation of other pollutants (methylene blue) and with other photocatalysts (g-C3N4) indicate that the MFE is a ubiquitous phenomenon in the photocatalytic degradation process. These observations suggest that the magnetic field can be taken as an efficient strategy to regulate the catalytic process of commercial catalysts and improve the catalytic efficiency.

5.
RSC Adv ; 8(19): 10654-10664, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-35540486

ABSTRACT

Reticular BiVO4 catalysts were successfully synthesized via a modified sol-gel method. Here, citric acid (CA) was used as the chelating agent and ethylenediaminetetraacetic acid (EDTA) was used as the chelating agent and template. Furthermore, the effects of pH values and EDTA on the structure and morphology of the samples were studied. We determined that EDTA and pH played important roles in the determination of the morphology of the as-prepared BiVO4 samples. Photocatalytic evaluation revealed that the reticular BiVO4 exhibited superior photocatalytic performance characteristics for the degradation of methylene blue (MB) under visible-light (λ > 400 nm) exposure, about 98% of the MB was found to degrade within 50 min. Moreover, the degradation kinetics of MB was in good agreement with pseudo-first-order kinetics. The obtained apparent reaction rate constant k app of reticular BiVO4 was much higher than that of BiVO4 synthesized by the citric acid sol-gel method.

6.
Nanoscale Res Lett ; 9(1): 545, 2014.
Article in English | MEDLINE | ID: mdl-25294976

ABSTRACT

In order to prominently investigate the effects of the surface spin on the magnetic properties, the weak magnetic ZnLa0.02Fe1.98O4 nanoparticles were chosen as studying objects which benefit to reduce as possibly the effects of interparticle dipolar interaction and crystalline anisotropy energies. By annealing the undiluted and diluted ZnLa0.02Fe1.98O4 nanoparticles at different temperatures, we observed the rich variations of magnetic ordering states (superparamagnetism, weak ferromagnetism, and paramagnetism). The magnetic properties can be well understood by considering the effects of the surface spin of the magnetic nanoparticles. Our results indicate that in the nano-sized magnets with weak magnetism, the surface spin plays a crucial rule in the magnetic properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...