Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 357: 124452, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936036

ABSTRACT

Schwertmannite (Sch) holds a great promise as an iron material for remediating Arsenic (As)-contaminated paddy soils, due to its extremely high immobilization capacities for both arsenate [As(V)] and arsenite [As(III)]. However, there is still limited knowledge on the mineral phase transformation of this metastable iron-oxyhydroxysulfate mineral in paddy soils, particularly under different water management regimes including aerobic, intermittent flooding, and continuous flooding, and how its phase transformation impacts the migration of As in paddy soils. In this study, a membrane coated with schwertmannite was first developed to directly reflect the phase transformation of bulk schwertmannite applied to paddy soils. A soil incubation experiment was then conducted to investigate the mineral phase transformation of schwertmannite in paddy soils under different water management regimes and its impact on the migration of As in paddy soil. Our findings revealed that schwertmannite can persist in the paddy soil for 90 days in the aerobic group, whereas in the continuous flooding and intermittent flooding groups, schwertmannite transformed into goethite, with the degree or rate of mineral phase transformation being 5% Sch >1% Sch > control. These results indicated that water management practices and the amount of schwertmannite applied were the primary factors determining the occurrence and degree of mineral transformation of schwertmannite in paddy soil. Moreover, despite undergoing phase transformation, schwertmannite still significantly reduced the porewater As (As(III) and As(V)), and facilitated the transfer of non-specifically adsorbed As (F1) and specifically adsorbed As (F2) to amorphous iron oxide-bound As (F3), effectively reducing the bioavailability of soil As. These findings contribute to a better understanding of the mineralogical transformation of schwertmannite in paddy soils and the impact of mineral phase transformation on the retention of As in soil, which carry important implications for the application of schwertmannite in remediating As-contaminated paddy soils.

2.
J Hazard Mater ; 474: 134775, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824772

ABSTRACT

High-risk antibiotic-resistant bacteria (ARB) and their accompanying antibiotic resistance genes (ARGs) seriously threaten public health. As a crucial medium for ARB and ARGs spread, soils with biogas slurry have been widely investigated. However, few studies focused on high-risk multi-drug resistant bacteria (MDRB) and their associated ARGs. This study examined ARB distribution in different agricultural soils with biogas slurry across 12 districts in China. It identified high-risk MDRB in various soil backgrounds, elucidating their resistance and spread mechanism. The findings revealed that diverse cultured ARB were enriched in soils with biogas slurry, especially soil ciprofloxacin ARB, which were enriched (>2.5 times) in 68.4 % of sampling sites. Four high-risk MDRB isolated from Hebei, Zhejiang, Shanxi, and Gansu districts were identified as severe or opportunistic pathogens, which carried abundant mobile genetic elements (MGEs) and 14 known high risk ARGs, including aac(3)-IId, aac(6')-Ib3, aph(6)-Id, aac(6')-Ib3, aadA1, blaOXA-10, blaTEM-1B, dfrA12, dfrA14, cmlA1, sul1, floR, tet(M) and tet(L). The antibiotics accumulation, diverse ARGs and MGEs enrichment, and proliferation of pathogenic bacteria could be potential driving factors of their occurrence and spread. Therefore, the coexistence of the high-risk MDRB and ARGs combined with the associated MGEs in soils with biogas slurry should be further investigated to develop technology and policy for reducing their negative influences on the effectiveness of clinical antibiotics.


Subject(s)
Agriculture , Bacteria , Biofuels , Soil Microbiology , China , Bacteria/genetics , Bacteria/drug effects , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
3.
PLoS One ; 19(5): e0302311, 2024.
Article in English | MEDLINE | ID: mdl-38814929

ABSTRACT

This study aimed to enhance sludge dewatering through sequential bioleaching, employing the filamentous fungus Mucor sp. ZG-3 and the iron-oxidizing bacterium Acidithiobacillus ferrooxidans LX5. The mechanism by which Mucor sp. ZG-3 alleviates sludge dissolved organic matter (DOM) inhibition of A. ferrooxidans LX5 was investigated, and the optimal addition of energy source for enhanced sludge dewaterability during sequential bioleaching was determined. Sludge dissolved organic carbon (DOC) decreased to 272 mg/L with a 65.2% reduction by Mucor sp. ZG-3 in 3 days, and the degraded fraction of sludge DOM was mainly low-molecular-weight DOM (L-DOM) which inhibited the oxidization of Fe2+ by A. ferrooxidans LX5. By degrading significant inhibitory low-molecular-weight organic acids, Mucor sp. ZG-3 alleviated DOM inhibition of A. ferrooxidans LX5. In the sequential bioleaching process, the optimal concentration of FeSO4·7H2O for A. ferrooxidans LX5 was 4 g/L, resulting in the minimum specific resistance to filtration (SRF) of 2.60×1011 m/kg, 40.0% lower than that in the conventional bioleaching process with 10 g/L energy source. Moreover, the sequential bioleaching process increased the sludge zeta potential (from -31.8 to -9.47 mV) and median particle size (d50) of the sludge particle (from 17.90 to 27.44 µm), contributing to enhanced sludge dewaterability. Inoculation of Mucor sp. ZG-3 during the bioleaching process reduced the demand for energy sources by A. ferrooxidans LX5 while improving sludge dewaterability performance.


Subject(s)
Mucor , Sewage , Mucor/metabolism , Sewage/microbiology , Biodegradation, Environmental , Water/chemistry , Water/metabolism , Organic Chemicals/metabolism
4.
Water Res ; 254: 121414, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38461604

ABSTRACT

Pre-acidification has been shown to be crucial in attenuating antibiotic resistance genes (ARGs) during the conditioning of sewage sludge. However, it is of great significance to develop alternative conditioning approaches that can effectively eliminate sludge-borne ARGs without relying on pre-acidification. This is due to the high investment costs and operational complexities associated with sludge pre-acidification. In this study, the effects of Fe2+/Ca(ClO)2 conditioning treatment on the enhancement of sludge dewaterability and the removal of ARGs were compared with other conditioning technologies. The dose effect and the associated mechanisms were also investigated. The findings revealed that Fe2+/Ca(ClO)2 conditioning treatment had the highest potential, even surpassing Fenton treatment with pre-acidification, in terms of eliminating the total ARGs. Moreover, the effectiveness of the treatment was found to be dose-dependent. This study also identified that the •OH radical reacted with extracellular polymeric substance (EPS) and extracellular ARGs, and the HOCl, the production of which was positively correlated with the dose of Fe2+/Ca(ClO)2, could infiltrate the EPS layer and diffuse into the cell of sludge flocs, inducing the oxidation of intracellular ARGs. Furthermore, this study observed a significant decrease in the predicted hosts of ARGs and MGEs in sludge conditioned with Fe2+/Ca(ClO)2, accompanied by a significant downregulation of metabolic pathways associated with ARG propagation, thereby contributing to the attenuation of sludge-borne ARGs. Based on these findings, it can be concluded that Fe2+/Ca(ClO)2 conditioning treatment holds great potential for the removal of sludge-borne ARGs while also enhancing sludge dewaterability, which mainly relies on the intracellular oxidation by HOCl.


Subject(s)
Anti-Bacterial Agents , Sewage , Extracellular Polymeric Substance Matrix , Oxidation-Reduction , Drug Resistance, Microbial/genetics , Water
5.
Environ Pollut ; 324: 121383, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36870598

ABSTRACT

Planting rice (Oryza sativa L.) in As-contaminated paddy soils can lead to accumulation of arsenic (As) in rice grains, while the application of phosphorus (P) fertilizers during rice growth may aggravate the accumulation effect. However, remediating flooding As-contaminated paddy soils with conventional Fe(III) oxides/hydroxides can hardly achieve the goals of effectively reducing grain As and maintaining the utilization efficiency of phosphate (Pi) fertilizers simultaneously. In the present study, schwertmannite was proposed to remediate flooding As-contaminated paddy soil because of its strong sorption capacity for soil As, and its effect on the utilization efficiency of Pi fertilizer was investigated. Results of a pot experiment showed that Pi fertilization along with schwertmannite amendment was effective to reduce the mobility of As in the contaminated paddy soil and meanwhile increase soil P availability. The schwertmannite amendment along with Pi fertilization reduced the content of P in Fe plaque on rice roots, compared with the corresponding amount of Pi fertilizer alone, which can be attributed to the change in mineral composition of Fe plaque mainly induced by schwertmannite amendment. Such reduction in P retention on Fe plaque was beneficial for improving the utilization efficiency of Pi fertilizer. In particular, amending flooding As-contaminated paddy soil with schwertmannite and Pi fertilizer together has reduced the content of As in rice grains from 1.06 to 1.47 mg/kg to only 0.38-0.63 mg/kg and significantly increased the shoot biomass of rice plants. Therefore, using schwertmannite to remediate flooding As-contaminated paddy soils can achieve the dual goals of effectively reducing grain As and maintaining the utilization efficiency of P fertilizers.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Fertilizers/analysis , Arsenic/analysis , Soil , Ferric Compounds/pharmacology , Soil Pollutants/analysis , Cadmium/analysis
6.
J Hazard Mater ; 443(Pt B): 130262, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36327846

ABSTRACT

Sludge reuse and utilization is one of important routines of disseminating fecal pollution to surface water and groundwater. However, it remains unclear the spatial distribution of fecal pollution indicators in sludge flocs and their reductions during sludge treatment processes. In this study, the abundances of fecal pollution indicators including cross-assembly phage (crAssphage), JC and BK polyomavirus (JCPyV, BKPyV), human adenovirus (HAdV), the human-specific HF183 Bacteroides (HF183) and Escherichia coli (EC) in soluble extracellular polymeric substances (S-EPS), loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS), and pellets of sludge flocs were determined, and the effect of potassium ferrate (PF) treatment on their removal and inactivation was investigated by using both qPCR and viability-qPCR. Results showed that all investigated indicators were detected in each fraction of sludge flocs. The PF treatment led to a great migration of indicators from sludge pellets to sludge EPS and some extent of their inactivation in each fraction of sludge flocs. The overall reductions of human fecal indicators in sludge determined by qPCR were 0-1.30 logs, which were 0-2 orders of magnitude lower than those of 0.69-2.39 logs detected by viability-qPCR, implying their inactivation by PF treatment to potentially alleviate the associated human health risks.


Subject(s)
Iron Compounds , Sewage , Humans , Potassium Compounds , Water
7.
Environ Microbiol ; 24(10): 4946-4959, 2022 10.
Article in English | MEDLINE | ID: mdl-36053866

ABSTRACT

Plastic pollution and antibiotic resistance are two emerging environmental and human health crises today. Although it was revealed that microplastics can serve as vectors for the dissemination of antibiotic resistance, it is still unclear how the nanoplastics influence the horizontal transfer of antibiotic resistance genes (ARGs). Herein, we firstly compared the effect of polystyrene (PS) micro/nanoplastics on the transformation of plasmid-borne ARG, using a transformation model consisting of plasmid pUC19 (ampR ) and Escherichia coli DH5α (recipient). Due to its size effect, PS nanoplastics (10-500 mg/L) significantly enhanced the transformation efficiency (2.8-5.4 folds) and frequency (3.2-8.4 folds) of exogenous ampR into E. coli, while PS microplastics exerted no influence. The detailed mechanisms were found that nanoplastics induced reactive oxygen species (ROS) overproduction, activated SOS response, increased cell membrane permeability and changed the secretion systems, thereby facilitating the uptake of exogenous DNA by bacteria. Moreover, the co-presences of nanoplastics with humic acid or Fe3+ relieved to some extent, but did not completely alleviate the promoting effect of nanoplastics on plasmid transformation. Our findings suggest that the risk of nanoplastics on promoting the dissemination of antibiotic resistance should not be neglected, and further studies are needed to investigate such risk in complex environments.


Subject(s)
Escherichia coli , Microplastics , Adenosine Monophosphate , Ampicillin/pharmacology , Ampicillin Resistance , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Humans , Humic Substances , Plasmids/genetics , Plastics , Polystyrenes/pharmacology , Reactive Oxygen Species
8.
Water Res ; 218: 118513, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35512537

ABSTRACT

Mineralization coupled with neutralization is a dual-function technology for disposing acidic iron-rich waters, which can recover the valuable iron in the form of secondary mineral and concurrently purify the wastewater. In this study, a modified technology for treating high Fe wastewater (sulfur acid spent pickling liquor, 62 g Fe/L) was proposed based on the specific investigation of the mineralization behaviors in Fe concentration range of 20-70 g/L. Results showed that high SO42-/Fe2+ molar ratio (> 2.0) tended to trigger gelation phenomena at Fe concentrations above 30 g/L. Fe specie distribution suggested that the insufficient polymerization among Fe-OH complexes might be responsible for the gelation phenomena, since the strong Fe-SO4 coordination almost completely suppressed the Fex(OH)y(3x-y)+ form (a general terms of Fe3+ hydrolysates and their polymers). Modified mineralization strategies were proposed, including pretreatment with dilution or BaCl2/CaCl2 precipitation, of which CaCl2 pretreatment was a versatile and low-cost method. Following CaCl2 pretreatment, chemical mineralization converted above 90% of iron into secondary mineral, which therefore drastically reduced the alkali consumption (from 164.2 g/L to 1.4 g/L) and sludge yield (from 328.1 g/L to 2.4 g/L) in subsequent neutralization treatment. The resultant mineral was identified as schwertmannite, and exhibited efficient adsorption capacity toward arsenite (364.2 mg/g). The modified chemical mineralization-alkaline neutralization is a cost-effective technology for the treatment of the acidic iron-rich waters. In practical applications, several regulating strategies should be further explored to improve the mineral purity, and the mineralization conditions must be optimized according to the Fe and SO42- concentrations in wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Acids , Alkalies , Calcium Chloride , Iron/chemistry , Minerals , Sulfur , Water Pollutants, Chemical/analysis
9.
J Environ Manage ; 310: 114802, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35228166

ABSTRACT

Fecal contamination in wastewater treatment system may pose severe threats to human health, but the detailed contamination of fecal bacterial and viral pathogens in municipal sewage sludge remains unclear. In addition, it is also unclear how sludge conditioning treatments would impact the distribution of fecal markers in conditioned sewage sludge. Before addressing these two issues, the possible polymerase chain reaction (PCR) inhibition effect when determining the abundances of fecal markers in both sludge solids and sludge supernatants should be solved, and methods of effectively concentrating fecal markers from sludge supernatant should also be developed. In the present study, we found that the serial tenfold dilution effectively reduced the PCR inhibition effect when determining the abundances of fecal markers including cross-assembly phages (CrAssphage), JC polyomavirus (JCPyV), human-specific HF183 bacteroides (HF183), human BK polyomavirus (BKPyV), human adenovirus (HAdV) and Escherichia coli (EC), while the utilization of negatively charged HA membrane was effective to recover fecal markers from sludge supernatant. The results of a six-month monitoring revealed that gene markers of CrAssphage, JCPyV, HF183, BKPyV, HAdV, and EC can be detected in municipal sewage sludge collected from a local wastewater treatment plant. Among the investigated four chemical conditioning methods, i.e., chemical conditioning with polyacrylamide (PAM), Fe[III]/CaO, or Fenton's reagent, and chemical acidification conditioning, chemical conditioning with Fenton's reagent was much more effective than the other three conditioning methods to reduce the abundances of fecal markers in the supernatant and solid of conditioned sewage sludge. Furthermore, the investigated fecal markers in the conditioned sewage sludge can be simultaneously attenuated by employing suitable conditioning methods, consequently reducing the associated environmental risks.


Subject(s)
Sewage , Water Purification , Bacteria , Feces/microbiology , Humans , Sewage/chemistry
10.
J Hazard Mater ; 430: 128502, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35183053

ABSTRACT

UV-based advanced oxidation processes (UV-AOPs) have been recommended to disinfect wastewater treatment plant (WWTP) effluents to control the dissemination of antibiotic resistance, but the mechanism of intracellular antibiotic resistance genes (i-ARGs) degradation by UV-AOPs is still poorly understood. Here we compared the efficacies of UV, UV/H2O2, and UV/PDS in degrading seven i-ARGs carried by a multi-drug resistant P. putida MX-2 isolated from sewage sludge and investigated the roles of free radicals and UV irradiation in degrading the carried i-ARGs in UV-AOPs. The results suggested that although UV/H2O2 and UV/PDS were only slightly superior to UV to inactivate P. putida MX-2, they significantly promoted the degradation of i-ARGs. The generated free radicals mainly reacted with the bacterial extracellular polymeric substances (EPS), increased the cell membrane permeability of bacteria, and consequently facilitated UV irradiation enter into the intracellular environment to damage the i-ARGs, thus enhancing their degradation during UV-AOPs processes. Our findings suggested that the removal of bacterial EPS by free radicals greatly contributed to the degradation of i-ARGs by UV irradiation in UV-AOPs, and more efficient approaches that are capable of removing EPS should be further developed to effectively control the dissemination of antibiotic resistance by UV treatment of wastewater effluent.


Subject(s)
Extracellular Polymeric Substance Matrix , Pseudomonas putida , Anti-Bacterial Agents/pharmacology , Disinfection/methods , Drug Resistance, Microbial/genetics , Genes, Bacterial , Hydrogen Peroxide/pharmacology , Pseudomonas putida/genetics , Ultraviolet Rays , Wastewater/microbiology
11.
Waste Manag ; 137: 89-99, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34749181

ABSTRACT

Conditioning can drastically improve the dewaterability of sewage sludge and is widely practiced in most wastewater treatment plants (WWTPs). Sludge conditioning was also reported as a crucial step in sludge treatment to attenuate antibiotic resistance, but it remains unclear whether the attenuated antibiotic resistance by conditioning treatments would guarantee low abundance of antibiotic resistance genes (ARGs) in the compost products of municipal sewage sludge. Herein, the impacts of three conditioning treatments, including bioleaching and chemical conditioning using Fe[III]/CaO or polyacrylamide (PAM), on the abundances of 20 ARGs and 4 mobile genetic elements (MGEs) during conventional aerobic composting of dewatered sludge were investigated. It was found that the absolute and relative abundances of total ARGs in compost product of bioleached sludge accounted for only 13.8%-28.8% of that in compost products of un-conditioned, Fe[III]/CaO-conditioned, or PAM-conditioned sludges. Besides, bioleaching conditioning resulted in the lowest abundances of ARG subtypes and ARG-associated bacteria in the sludge compost product. The shift of ARG profiles in the bioleached sludge composting can be mainly ascribed to the ARG-associated bacteria, while the MGEs drove the ARG profiles during conventional composting of un-conditioned sludge and the two chemically conditioned sludge. Thus, bioleaching conditioning is superior to the chemical conditioning using Fe[III]/CaO or PAM in mitigating antibiotic resistance in sludge compost products, which was contributed by the pre-removal of ARGs prior to composting treatment and the potential limitation of ARGs transfer during conventional composting.


Subject(s)
Composting , Sewage , Acrylic Resins , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal , Genes, Bacterial
12.
J Hazard Mater ; 424(Pt C): 127539, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34800843

ABSTRACT

Bioreduction can facilitate oxyanions removal from wastewater. However, simultaneously removing selenate, nitrate and sulfate and recovering high-purity elemental selenium (Se0) from wastewater by a single system is difficult and may lead to carcinogenic selenium monosulfide (SeS) formation. To solve this issue, a two-stage biological fluidized bed (FBR) process with ethanol dosing based on oxidation-reduction potential (ORP) feedback control was developed in this study. FBR1 performance was first evaluated at various ORP setpoints (between -520 and -360 mV vs. Ag/AgCl) and elevated sulfate concentration. Subsequently, ethanol-fed FBR2 was used to reduce sulfate from FBR1 effluent, followed by an aerated sulfide oxidation reactor (SOR). At - 520 mV≤ ORPs≤ -480 mV, FBR1 removed 100 ±â€¯0.1% nitrate and 99.7 ±â€¯0.3% selenate without sulfate reduction. At ORPs ≥ -440 mV, selenate reduction was incomplete, whereas nitrate removal remained stable. Se0 recovery efficiency from FBR1 effluent was 37.5% with 71% Se purity. FBR2 converted 86% of the remaining sulfate in FBR1 effluent to hydrogen sulfide, but the over-oxidation of dissolved sulfide in SOR decreased the overall sulfate removal efficiency to ~46.3%. Overall, the two-stage FBR process with ORP feedback dosing of ethanol was effective for sequentially removing selenate, nitrate and sulfate and recovering Se0 from wastewater.


Subject(s)
Nitrates , Selenium , Bioreactors , Feedback , Oxidation-Reduction , Selenic Acid , Sulfates
13.
J Environ Manage ; 295: 113114, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34171779

ABSTRACT

Acidithiobacillus ferrooxidans ILS-2 was adapted in digested sludge and used to treat sludge for dewaterability improvement. Results showed that increasing ferrous iron loading increased sludge dewaterability, but the inoculation of the bioleaching strain had little effect on sludge dewaterability compared to controls without the strain. The total extracellular polymeric substances (EPS) contents of sludges with and without bioleaching treatment were similar except for bioleaching treatment at 10% ferrous iron loading (on sludge total solids) where total EPS was higher with bioleaching treatment. However, bioleaching treatment for 48 h had a notable effect on removal of heavy metals, such as Mn, Ni and Zn, especially at the high loadings of ferrous iron. In the presence of A. ferrooxidans, the removal of Ni, Mn and Zn reached 93%, 88% and 80%, respectively, at a ferrous iron loading of 21%. The sequencing of 16S rRNA genes indicated that increasing ferrous iron loadings to 15% and 21% increased the relative abundance of Acidithiobacillus, Acidocella (with A. ferrooxidans) and Carboxylicivirga (without A. ferrooxidans) but decreased the abundance of Pseudomonas and Acinetobacter after 48 h treatment. This study enhanced the understanding of the correlations between bioleaching treatment of digested sludge, sludge dewaterability, heavy metal removal and bacterial communities.


Subject(s)
Acidithiobacillus , Metals, Heavy , Hydrogen-Ion Concentration , Iron , RNA, Ribosomal, 16S/genetics , Sewage
14.
Environ Res ; 195: 110855, 2021 04.
Article in English | MEDLINE | ID: mdl-33581092

ABSTRACT

Co-contamination of arsenic and polycyclic aromatic hydrocarbons (PAHs) in groundwater is frequently reported, and it is thus necessary to develop efficient techniques to tackle this problem. Here, we evaluated the feasibility of utilizing schwertmannite to co-adsorb As(III) and phenanthrene from water solution and regenerating spent schwertmannite via a heterogeneous Fenton-like reaction to degrade adsorbed phenanthrene and meanwhile oxidize adsorbed As(III). The results suggested that schwertmannite with a hedgehog-like morphology was superior to that with a smooth surface for the adsorption removal of As(III) or phenanthrene because of the much higher BET surface area and hydroxyl proportion of the former one, and schwertmannite formed at 72 h incubation effectively co-adsorbed As(III) and phenanthrene from water solution. The adsorption of As(III) and phenanthrene on schwertmannite did not interfere with each other, while the acidic initial solution pH delayed the adsorption of As(III) on schwertmannite but enhanced the adsorption capacity for phenanthrene. The adsorption of As(III) on schwertmannite mainly involved its exchange with SO42- (outer-sphere or inner-sphere) and its complexation with iron hydroxyl surface groups, and phenanthrene adsorption mainly occurred through cation-π bonding and OH-π interaction. During the adsorption-regeneration processes, schwertmannite adsorbed As(III) and phenanthrene firstly, and then it can be successfully regenerated via Fenton-like reaction catalyzed by itself to effectively degrade the adsorbed phenanthrene and meanwhile oxidize the adsorbed As(III) to As(V). Therefore, schwertmanite is an outstanding environmental adsorbent to decontaminate As(III) and phenanthrene co-existing in groundwater.


Subject(s)
Phenanthrenes , Adsorption , Hydrogen-Ion Concentration , Iron Compounds
15.
Sci Total Environ ; 759: 143473, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33203566

ABSTRACT

Animal manures are commonly applied to soil which possibly promote the spread of antibiotic resistance from soil to human beings via food chains. Biogas slurry is an end product of anaerobic digestion of animal manures, which has been widely applied as fertilizers in the agricultural soil. However, effect of long-term biogas slurry application on the soil antibiotic resistance and the associated mechanism still remains unclear. The present study characterized antibiotics, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community, in different agricultural soils unamended (BS-) and amended (BS+) with biogas slurry (8-18 years) in five field experiments. Our results indicated that long-term application of biogas slurry largely increased the concentrations of tetracyclines in soils, and greatly increased the abundances of ARGs, transposase gene (Tn916/1545) and ARGs-associated bacteria. Long-term application of biogas slurry led to tetracyclines accumulation and ARGs enrichment in agricultural soil, and the selection pressure from tetracyclines and the increase of Tn916/1545 abundace become potential contributors for the increase of soil antibiotic resistance via promoting the enrichment of ARG-associated bacteria. The results of the present study should be taken into consideration to develop policy and practice for mitigating the enrichment and spread of antibiotic resistance during the recycling of biogas slurry into agricultural soil.


Subject(s)
Biofuels , Soil , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans , Manure , Soil Microbiology
16.
Environ Technol ; 42(16): 2573-2586, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31869277

ABSTRACT

In this study, the usefulness of the ZVI/S2O82- system in enhancing the dewaterability of waste activated sludge was studied at different initial sludge pH levels to reveal the associated mechanisms. Results showed that conditioning of sludge by the ZVI/S2O82- system at acidic initial sludge pHs enhanced sludge filterability and the dryness of dewatered sludge cake, while only the sludge filterability was improved at neutral initial sludge pH. In particular, the conditioning treatment using 0.353 g/g DS of ZVI and Na2S2O8 with a mole ratio of 1.25:1, at initial sludge pH 2.52, was the optimum condition to improve sludge dewaterability, which reduced the moisture content of dewatered sludge cake to only 69.8% and meanwhile reduced sludge CST and SRF to only 70.9% and 40.7% of that of raw sludge, respectively. During the conditioning treatment, sludge microbial cell lysis resulting from decreasing the initial sludge pH led to the reduction in the moisture content of dewatered sludge cake, while the oxidation of sludge EPS and the coagulation of the disrupted sludge flocs achieved by the ZVI/S2O82- system improved sludge filterability. A kaolin suspension experiment revealed that with a decrease in system pH, the oxidation effect was gradually inhibited and the coagulation effect offset the disruption effect on sludge flocs to improve the filterability of sludge. Therefore, the conditioning of waste activated sludge using the ZVI/Na2S2O8 system at acidic initial sludge pHs is useful to enhance the sludge filterability and the dryness of dewatered sludge cake, both of which are crucial for improving sludge dewatering performance.


Subject(s)
Iron , Sewage , Hydrogen-Ion Concentration , Oxidation-Reduction , Waste Disposal, Fluid , Water
17.
J Hazard Mater ; 402: 123770, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254781

ABSTRACT

Electron donors are a major cost-factor in biological removal of oxyanions, such as nitrate and selenate from wastewater. In this study, an online ethanol dosing strategy based on feedback control of oxidation-reduction potential (ORP) was designed to optimize the performance of a lab-scale fluidized bed reactor (FBR) in treating selenate and nitrate (5 mM each) containing wastewater. The FBR performance was evaluated at various ORP setpoints ranging between -520 mV and -240 mV (vs. Ag/AgCl). Results suggested that both nitrate and selenate were completely removed at ORPs between -520 mV and -360 mV, with methylseleninic acid, selenocyanate, selenosulfate and ammonia being produced at low ORPs between -520 mV and -480 mV, likely due to overdosing of ethanol. At ORPs between -300 mV and -240 mV, limited ethanol dosing resulted in an apparent decline in selenate removal whereas nitrate removal remained stable. Resuming the ORP to -520 mV successfully restored complete selenate reduction. An optimal ORP of -400 mV was identified for the FBR, whereby selenate and nitrate were nearly completely removed with a minimal ethanol consumption. Overall, controlling ORP via feedback-dosing of the electron donor was an effective strategy to optimize FBR performance for reducing selenate and nitrate in wastewater.


Subject(s)
Bioreactors , Nitrates , Ethanol , Feedback , Oxidation-Reduction , Selenic Acid
18.
Environ Sci Pollut Res Int ; 28(11): 13300-13311, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33175353

ABSTRACT

Fenton conditioning processes have been recently employed to improve the dewaterability of sewage sludge. However, it remains unclear whether the conditioning with Fenton's reagent would simultaneously attenuate antibiotic resistance genes (ARGs) in sludge and improve sludge dewaterability. It was found in the present study that sludge pre-acidification played a pivotal role in simultaneously removing ARGs and improving sludge dewaterability by conditioning with Fenton's reagent. When the sewage sludge was pre-acidified to pH = 3.0 and was then conditioned using Fenton's reagent, the absolute abundances of the total ARGs and the total mobile genic elements (MGEs) in conditioned sludge were reduced by 1.85-2.10 and 2.84-3.12 log units, respectively. Additionally, sludge capillary suction time (CST) and specific resistance to filtration (SRF) were drastically reduced, and the moisture content (MC) in dewatered sludge cake was reduced to only 60.61-69.95%. Such effective attenuation of ARGs and MGEs in conditioned sludge led to their removal in both the dewatered sludge cakes and dewatering filtrate. However, only the improvement of sludge dewaterability was attained by sludge conditioning with Fenton's reagent but without sludge pre-acidification. During the conditioning treatment, the removal of loosely bound extracellular polymeric substance (EPS) and tightly bound EPS in conditioned sludge contributed to the improvement of sludge dewaterability, and the damage of sludge microbial cells was highly correlated with the attenuation of antibiotic resistance. Thus, sludge pre-acidification combined with conditioning using Fenton's reagent can be employed to simultaneously attenuate the antibiotic resistance in sewage sludge and improve sludge dewaterability.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Anti-Bacterial Agents , Drug Resistance, Microbial/genetics , Hydrogen Peroxide , Hydrogen-Ion Concentration , Iron , Waste Disposal, Fluid , Water
19.
Chemosphere ; 262: 127567, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32755692

ABSTRACT

Acid mine drainage (AMD) is recognized as a challenge encountered by mining industries globally. Cyclic mineralization method, namely Fe2+ oxidation/mineralization-residual Fe3+ reduction-resultant Fe2+ oxidation/mineralization, could precipitate Fe and SO42- present in AMD into iron hydroxysulfate minerals and greatly improve the efficiency of subsequent lime neutralization, but the current Fe0-mediated reduction approach increased the mineralization cycles. This study constructed a bacteria-driven biomineralization system based on the reactions of Acidithiobacillus ferrooxidans-mediated Fe2+ oxidation and Acidiphilium multivorum-controlled Fe3+ reduction, and utilized water-dropping aeration and biofilm technology to satisfy the requirement of practical application. The resultant biofilms showed stable activity for Fe conversion: the efficiency of Fe2+-oxidation, Fe-precipitation, and Fe3+-reduction maintained at 98%, 32%, and 87%, respectively. Dissolved oxygen for Fe-oxidizing bacteria growth was continuously replenished by water-dropping aeration (4.2-7.2 mg/L), and the added organic carbon was mainly metabolized by Fe-reducing bacteria. About 89% Fe and 60% SO42- were precipitated into jarosite mineral after five biomineralization cycles. Fe was removed via forming secondary mineral precipitates, while SO42- was coprecipitated into mineral within the initial three biomineralization cycles, and then mainly precipitated with Ca2+ afterwards. Fe concentration in AMD was proven to directly correlate with subsequent lime neutralization efficiency. Biomineralization for five cycles drastically reduced the amount of required lime and neutralized sludge by 75% and 77%, respectively. The results in this study provided theoretical guidance for practical AMD treatment based on biomineralization technology.


Subject(s)
Iron/analysis , Water Pollutants, Chemical/analysis , Acidiphilium , Acidithiobacillus , Acids , Bacteria/metabolism , Biodegradation, Environmental , Biomineralization , Calcium Compounds , Ferric Compounds , Iron/metabolism , Minerals , Mining , Oxides , Sulfates , Water Pollutants, Chemical/metabolism
20.
Sci Total Environ ; 749: 142359, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33370900

ABSTRACT

Wastewater contaminated with high concentrations of selenium oxyanions requires treatment prior to discharge. Biological fluidized bed reactors (FBRs) can be an option for removing selenium oxyanions from wastewater by converting them into elemental selenium, which can be separated from the treated effluent. In this study, a lab-scale FBR was constructed with granular activated carbon as biofilm carrier and inoculated with a consortium of selenate reducing bacteria enriched from environmental samples. The FBR was loaded with an influent containing ethanol (10 mM) and selenate (10 mM) as the microbial electron donor and acceptor, respectively. The performance of the FBR in reducing selenate was evaluated under various hydraulic retention times (HRTs) (120 h, 72 h, 48 h, 24 h, 12 h, 6 h, 3 h, 1 h and 20 min). After process acclimatization, selenate was completely removed with no notable selenite produced when the HRT was stepwise decreased from 120 h to 6 h. However, decreasing the HRT to 3 h resulted in selenite accumulation (0.17 ± 0.023 mM) in the effluent although selenate removal efficiency remained at 99.8 ± 0.20%. At 1 h HRT, the FBR removed 90.8 ± 1.4% of the selenate at a rate of 9.6 ± 0.15 mM h-1, which is the highest selenate reduction rate reported in the literature so far. However, 1 h HRT resulted in notable selenite accumulation (up to 2.4 ± 0.27 mM). Further decreasing the HRT to 20 min resulted in a notable decline in selenate reduction. Selenate reduction recovered from the "shock loading" after the HRT was increased back to 3 h. However, selenite still accumulated until the FBR was operated in batch mode for 6 days. This study affirmed that FBR is a promising treatment option for selenate-rich wastewater, and the process can be efficiently operated at low HRTs.


Subject(s)
Bioreactors , Selenium Compounds , Anaerobiosis , Charcoal , Selenic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...