Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Breast Cancer ; 31(1): 135-147, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981615

ABSTRACT

BACKGROUND: Triple-negative breast cancers (TNBC) are highly aggressive malignancies with poor prognosis. As an essential enzyme in the tryptophan-kynurenine metabolic pathway, indoleamine 2,3 dioxygenase-1 (IDO-1) has been reported to facilitate immune escape of various tumors. However, the mechanism underlying the immunosuppressive role of IDO-1 in TNBC remains largely uncharacterized. METHODS: We examined the IDO-1 expression in 93 clinical TNBC tissues and paired adjacent normal tissues, and analyzed the regulation role of environmental cytokines like IFN-γ in IDO-1 expression. The effect of IDO-1 expression in TNBC cells on the function of NK cells were then evaluated and the underlying mechanisms were exploited. RESULTS: IDO-1 expressed in 50 of 93 (54.1%) TNBC patients. TNBC patients with high IDO-1 expression tended to have more infiltrated immune cells including NK cells, which are less active than patients with low IDO-1 expression. NK cells could produce IFN-γ, which induced IDO-1 expression in TNBC cells, whereas IDO-1 impaired the cytotoxicity of co-cultured NK cells by upregulation of HLA-G. Blockade of HLA-G improved the antitumor activity of NK cells to TNBC in vivo. CONCLUSION: TNBC cells induce dysfunction of NK cells through an IFN-γ/IDO-1/HLA-G pathway, which provide novel insights into the mechanisms of TNBC progression and demonstrate the applicability of IDO-1 and HLA-G targeting in the treatment of TNBC.


Subject(s)
HLA-G Antigens , Triple Negative Breast Neoplasms , Humans , HLA-G Antigens/metabolism , HLA-G Antigens/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/pharmacology , Killer Cells, Natural/metabolism , Triple Negative Breast Neoplasms/metabolism , Up-Regulation
2.
Front Immunol ; 14: 1121285, 2023.
Article in English | MEDLINE | ID: mdl-36960057

ABSTRACT

Finding effective treatments for cancer remains a challenge. Recent studies have found that the mechanisms of tumor evasion are becoming increasingly diverse, including abnormal expression of immune checkpoint molecules on different immune cells, in particular T cells, natural killer cells, macrophages and others. In this review, we discuss the checkpoint molecules with enhanced expression on these lymphocytes and their consequences on immune effector functions. Dissecting the diverse roles of immune checkpoints in different immune cells is crucial for a full understanding of immunotherapy using checkpoint inhibitors.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/pathology , T-Lymphocytes/metabolism , Killer Cells, Natural , Molecular Targeted Therapy
3.
Front Immunol ; 13: 791975, 2022.
Article in English | MEDLINE | ID: mdl-35185887

ABSTRACT

Human leukocyte antigen (HLA)-G is a nonclassical MHC Class I molecule, which was initially reported as a mediator of immune tolerance when expressed in extravillous trophoblast cells at the maternal-fetal interface. HLA-G is the only known ligand of killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4), an atypical family molecule that is widely expressed on the surface of NK cells. Unlike other KIR receptors, KIR2DL4 contains both an arginine-tyrosine activation motif in its transmembrane region and an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail, suggesting that KIR2DL4 may function as an activating or inhibitory receptor. The immunosuppressive microenvironment exemplified by a rewired cytokine network and upregulated immune checkpoint proteins is a hallmark of advanced and therapy-refractory tumors. Accumulating evidence has shown that HLA-G is an immune checkpoint molecule with specific relevance in cancer immune escape, although the role of HLA-G/KIR2DL4 in antitumor immunity is still uncharacterized. Our previous study had shown that HLA-G was a pivotal mediator of breast cancer resistance to trastuzumab, and blockade of the HLA-G/KIR2DL4 interaction can resensitize breast cancer to trastuzumab treatment. In this review, we aim to summarize and discuss the role of HLA-G/KIR2DL4 in the immune microenvironment of breast cancer. A better understanding of HLA-G is beneficial to identifying novel biomarker(s) for breast cancer, which is important for precision diagnosis and prognostic assessment. In addition, it is also necessary to unravel the mechanisms underlying HLA-G/KIR2DL4 regulation of the immune microenvironment in breast cancer, hopefully providing a rationale for combined HLA-G and immune checkpoints targeting for the effective treatment of breast cancer.


Subject(s)
Breast Neoplasms/genetics , HLA-G Antigens/genetics , Receptors, KIR2DL4/genetics , Tumor Microenvironment/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Female , HLA-G Antigens/immunology , Humans , Killer Cells, Natural/immunology , Receptors, KIR2DL4/immunology , Tumor Microenvironment/immunology
4.
Front Cell Dev Biol ; 9: 693782, 2021.
Article in English | MEDLINE | ID: mdl-34395427

ABSTRACT

OBJECTIVE: Studies have shown that the therapeutic effects of mesenchymal stem cells (MSCs) are mediated in a paracrine manner, mainly through extracellular vesicles such as exosomes. Here, we designed a study to investigate whether exosomes derived from adipose-derived mesenchymal stem cells (ADMSC-Exos) had protective effects in a rat model of radiation-induced brain injury and in microglia. METHODS: Male adult Sprague-Dawley (SD) rats were randomly divided into three groups: the control group, the radiation group (30 Gy), and the radiation + exosomes group (30 Gy + 100 ug exosomes). Meanwhile, microglia were divided into four groups: the control group, the radiation group (10 Gy), the radiation + exosomes group (10 Gy + 4 ug exosomes), and radiation + exosomes + EX527 group (10 Gy + 4 ug exosomes + 100 nM EX527). Tissue samples and the levels of oxidative stress and inflammatory factors in each group were compared. RESULTS: Statistical analysis showed that after irradiation, ADMSC-Exos intervention in vivo significantly reduced the levels of caspase-3, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and promoted the recovery of superoxide dismutase (SOD), catalase (CAT), IL-4, and IL-10. Moreover, ADMSC-Exos intervention inhibited microglial infiltration and promoted the expression of SIRT1. Furthermore, the results in vitro showed that the above effects of ADMSC-Exos could be reversed by SIRT-1 inhibitor EX527. CONCLUSION: This study demonstrated that ADMSC-Exos exerted protective effects against radiation-induced brain injury by reducing oxidative stress, inflammation and microglial infiltration via activating the SIRT1 pathway. ADMSC-Exos may serve as a promising therapeutic tool for radiation-induced brain injury.

5.
Signal Transduct Target Ther ; 6(1): 236, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34158475

ABSTRACT

Despite the successful use of the humanized monoclonal antibody trastuzumab (Herceptin) in the clinical treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, the frequently occurring drug resistance remains to be overcome. The regulatory mechanisms of trastuzumab-elicited immune response in the tumor microenvironment remain largely uncharacterized. Here, we found that the nonclassical histocompatibility antigen HLA-G desensitizes breast cancer cells to trastuzumab by binding to the natural killer (NK) cell receptor KIR2DL4. Unless engaged by HLA-G, KIR2DL4 promotes antibody-dependent cell-mediated cytotoxicity and forms a regulatory circuit with the interferon-γ (IFN-γ) production pathway, in which IFN-γ upregulates KIR2DL4 via JAK2/STAT1 signaling, and then KIR2DL4 synergizes with the Fcγ receptor to increase IFN-γ secretion by NK cells. Trastuzumab treatment of neoplastic and NK cells leads to aberrant cytokine production characterized by excessive tumor growth factor-ß (TGF-ß) and IFN-γ, which subsequently reinforce HLA-G/KIR2DL4 signaling. In addition, TGF-ß and IFN-γ impair the cytotoxicity of NK cells by upregulating PD-L1 on tumor cells and PD-1 on NK cells. Blockade of HLA-G/KIR2DL4 signaling improved the vulnerability of HER2-positive breast cancer to trastuzumab treatment in vivo. These findings provide novel insights into the mechanisms underlying trastuzumab resistance and demonstrate the applicability of combined HLA-G and PD-L1/PD-1 targeting in the treatment of trastuzumab-resistant breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , HLA-G Antigens/genetics , Receptor, ErbB-2/genetics , Receptors, KIR2DL4/genetics , Trastuzumab/pharmacology , Adult , Aged , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/immunology , Antibody-Dependent Cell Cytotoxicity/genetics , Antibody-Dependent Cell Cytotoxicity/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Female , Humans , Interferon-gamma/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Middle Aged , Receptors, Natural Killer Cell/genetics , Receptors, Natural Killer Cell/immunology , Trastuzumab/adverse effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
6.
Aging (Albany NY) ; 12(24): 26199-26220, 2020 12 19.
Article in English | MEDLINE | ID: mdl-33346749

ABSTRACT

Ring finger protein 2 (RNF2) is an important component of polycomb repressive complex 1. RNF2 is upregulated in many kinds of tumors, and elevated RNF2 expression is associated with a poor prognosis in certain cancers. To assess the function of RNF2 in colorectal cancer, we examined RNF2 protein levels in 313 paired colorectal cancer tissues and adjacent normal tissues. We then analyzed the association of RNF2 expression with the patients' clinicopathologic features and prognoses. RNF2 expression was upregulated in colorectal cancer tissues and was associated with the tumor differentiation status, tumor stage and prognosis. In colorectal cancer cell lines, downregulation of RNF2 inhibited cell proliferation and induced apoptosis. Gene microarray analysis revealed that early growth response 1 (EGR1) was upregulated in RNF2-knockdown cells. Knocking down EGR1 partially reversed the inhibition of cell proliferation and the induction of apoptosis in RNF2-knockdown cells. RNF2 was enriched at the EGR1 promoter, where it mono-ubiquitinated histone H2A, thereby inhibiting EGR1 expression. These results indicate that RNF2 is oncogenic in colorectal cancer and may promote disease progression by inhibiting EGR1 expression. RNF2 is thus a potential prognostic marker and therapeutic target in colorectal cancer.


Subject(s)
Apoptosis/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Early Growth Response Protein 1/genetics , Polycomb Repressive Complex 1/genetics , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Progression , Early Growth Response Protein 1/metabolism , Female , Gene Expression , Gene Knockdown Techniques , HCT116 Cells , Histone Code/genetics , Humans , Male , Middle Aged , Polycomb Repressive Complex 1/metabolism , Prognosis , Promoter Regions, Genetic , Ubiquitination , Up-Regulation
7.
Theranostics ; 10(5): 2422-2435, 2020.
Article in English | MEDLINE | ID: mdl-32104514

ABSTRACT

Macrophages are essential for wound repair after myocardial infarction (MI). CD226, a member of immunoglobulin superfamily, is expressed on inflammatory monocytes, however, the role of CD226 in infarct healing and the effect of CD226 on macrophage remain unknown. Methods: Wild type and CD226 knockout (CD226 KO) mice were subjected to permanent coronary ligation. CD226 expression, cardiac function and ventricular remodeling were evaluated. Profile of macrophages, myofibroblasts, angiogenesis and monocytes mobilization were determined. Results: CD226 expression increased in the infarcted heart, with a peak on day 7 after MI. CD226 KO attenuated infarct expansion and improved infarct healing after MI. CD226 deletion resulted in increased F4/80+ CD206+ M2 macrophages and diminished Mac-3+ iNOS+ M1 macrophages accumulation in the infarcted heart, as well as enrichment of α-smooth muscle actin positive myofibroblasts and Ki67+ CD31+ endothelial cells, leading to increased reparative collagen deposition and angiogenesis. Furthermore, CD226 deletion restrained inflammatory monocytes mobilization, as revealed by enhanced retention of Ly6Chi monocytes in the spleen associated with a decrease of Ly6Chi monocytes in the peripheral blood, whereas local proliferation of macrophage in the ischemic heart was not affected by CD226 deficiency. In vitro studies using bone marrow-derived macrophages showed that CD226 deletion potentiated M2 polarization and suppressed M1 polarization. Conclusion: CD226 expression is dramatically increased in the infarcted heart, and CD226 deletion improves post-infarction healing and cardiac function by favoring macrophage polarization towards reparative phenotype. Thus, inhibition of CD226 may represent a novel therapeutic approach to improve wound healing and cardiac function after MI.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/metabolism , Macrophages/metabolism , Myocardial Infarction/metabolism , Ventricular Remodeling , Animals , Antigens, Differentiation, T-Lymphocyte/genetics , Endothelial Cells/metabolism , Macrophage Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Phenotype , Wound Healing
8.
J Nanosci Nanotechnol ; 20(7): 4474-4479, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968500

ABSTRACT

Carbon matrix metal organic frameworks (MOFs) hybrid is often used as electrode materials for lithium ion batteries (LIBs). Herein, we report three dimensional (3D) puffed rice inspired porous carbon (3DPRC) supported Co-MOFs derived composite by facile method. Co/C nanoparticles are uniformly dispersed on porous carbon sheets surface, forming unique 3D structures. As anode of LIBs, the prepared Co/C-3DPRC electrode shows excellent electrochemical properties when compared with the pristine Co/C electrode. With capacity of 430 mAh g-1 at 1C and 300 mAh g-1 at 10C is obtained in the composite electrode, respectively. The excellent properties can attribute to the Co/C-3DPRC interconnected porous framework with a high electrical conductivity and large surface area. Our developed design strategies can be extended for fabrication of other heteroatom doped carbon matrix hybrid for environmental energy fields.

10.
Mol Cancer Ther ; 18(7): 1289-1301, 2019 07.
Article in English | MEDLINE | ID: mdl-31048359

ABSTRACT

Prostate cancer is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related death. It is of vital importance to develop new strategies for prostate cancer therapy. PSMA (prostate-specific membrane antigen) is specifically expressed in prostate cancer and the neovasculature of certain cancer types, thus is considered to be an ideal target for cancer therapy. In our previous study, we have obtained a PSMA-specific single-chain variable fragment (scFv), named gy1, from a large yeast display naïve human scFv library. In this study, we reconstructed the PSMA scFv into a fully human antibody (named PSMAb) and evaluated its characterization both in vitro and in vivo We showed that PSMAb can specifically bind with and internalize into PSMA+ cells. The binding affinity of PSMAb is measured to be at nanomolar level, and PSMAb has very good thermostability. In vivo study showed that near IR dye-labeled PSMAb can specifically localize at PSMA+ tumors, and the application of PSMAb in vivo significantly inhibited the growth of PSMA+ tumors, but not PSMA- tumors. At the studied doses, no obvious toxicity was observed when applied in vivo, as shown by the relative normal liver and kidney function and normal structure of important organs, shown by hematoxylin and eosin staining. In addition, PSMAb may inhibit tumor growth through antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity mechanisms. Our results indicated that the novel fully human antibody, PSMAb, deserve further study for PSMA-targeted diagnosis and therapy for prostate cancer and other cancer types with vascular PSMA expression.


Subject(s)
Glutamate Carboxypeptidase II/genetics , Membrane Glycoproteins/genetics , Prostatic Neoplasms/genetics , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/pathology
11.
Oncogene ; 38(28): 5686-5699, 2019 07.
Article in English | MEDLINE | ID: mdl-31043707

ABSTRACT

UHRF1 is an important epigenetic regulator that belongs to the UHRF family. Overexpression of UHRF1 has been found in many kinds of tumors and its overexpression is associated with poor prognosis and short survival in certain cancer types. However, its function in renal cell carcinoma (RCC) is not clear. Here we report that RCC tumor tissues had obviously higher UHRF1 expression than normal renal tissues. Downregulation of UHRF1 by siRNA or shRNA in RCC cell lines resulted in decreased cell viability, inhibited cell migration and invasion, and increased apoptosis. UHRF1 knockdown RCC xenografts also resulted in obviously inhibited tumor growth in vivo. After downregulation of UHRF1 in RCC cells, the expression of TXNIP was upregulated. In addition, after UHRF1 and TXNIP were simultaneously downregulated, cell viability and cell invasion increased, whereas cell apoptosis decreased compared with UHRF1 single downregulated cells. We also showed that UHRF1 could recruit HDAC1 to the TXNIP promoter and mediate the deacetylation of histone H3K9, resulting in the inhibition of TXNIP expression. Our results confirm that UHRF1 has oncogenic function in RCC and UHRF1 may promote tumor progression through epigenetic regulation of TXNIP. UHRF1 might be used as a therapeutic target for RCC treatment.


Subject(s)
CCAAT-Enhancer-Binding Proteins/physiology , Carcinoma, Renal Cell/pathology , Carrier Proteins/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/physiology , Kidney Neoplasms/pathology , Ubiquitin-Protein Ligases/physiology , Acetylation , Animals , Apoptosis , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Cell Movement , Down-Regulation , Heterografts , Histones/metabolism , Humans , Kidney Neoplasms/genetics , Mice , Mice, Nude , Neoplasm Invasiveness
12.
Life Sci ; 225: 64-71, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30953640

ABSTRACT

AIMS: In myocardial ischemia-reperfusion (MI/R) injury, impaired autophagy function worsens cardiomyocyte death. AMP-activated protein kinase (AMPK) is a heterotrimeric protein that plays an important role in cardioprotection and myocardial autophagic function. AMPKα1 and α2 are localized primarily in the cytoplasm and nucleus, respectively, in cardiomyocytes, but the isoform-specific autophagy regulation of AMPK during MI/R remains unclear. MATERIALS AND METHODS: An MI/R model was built, and the protein expression of AMPKα1/α2, p-AMPK, mTOR, p-mTOR, TFEB, p-FoxO3a, SKP2, CARM1, TBP, Atg5, LAMP2, LC3B, and p62 during ischemia and reperfusion was determined by western blotting. Recombinant adeno-associated virus (serotype 9) vectors carrying tandem fluorescent-tagged LC3 or mRFP-GFP-LC3/GFP-LC3 were used to evaluate the autophagy status. AMPKα2 knockout mice were used for in vivo studies. KEY FINDINGS: Both cytoplasmic AMPKα1 and nuclear α2 subunit expression decreased during the reperfusion period, which led to AMPKα1-mTOR-TFEB and AMPKα2-Skp2-CARM1-TFEB signaling inhibition, respectively. The decreased TFEB level during reperfusion suppressed autophagy. Metformin could activate both the AMPKα1- and α2- mediated pathways, thus restoring autophagy flux during reperfusion. Nevertheless, in AMPKα2 knockout mice, nuclear α2-regulated Skp2-CARM1-TFEB signaling was inhibited, while α1-related signaling was comparatively unaffected, which partially impaired metformin-enhanced autophagy. SIGNIFICANCE: Our study suggests that metformin had the dual effects of promoting both cytoplasmic AMPKα1- and nuclear AMPKα2-related signaling to improve autophagic flux and restore cardiac function during MI/R.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy , Cell Nucleus/enzymology , Cytoplasm/enzymology , Metformin/pharmacology , Myocardial Reperfusion Injury/drug therapy , Animals , CARD Signaling Adaptor Proteins/metabolism , Cells, Cultured , Gene Expression Regulation, Enzymologic/drug effects , Hypoglycemic Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , TOR Serine-Threonine Kinases/metabolism
13.
Theranostics ; 9(5): 1247-1263, 2019.
Article in English | MEDLINE | ID: mdl-30867828

ABSTRACT

Background and Aims: Prostate specific membrane antigen (PSMA) is specifically expressed on prostate epithelial cells and markedly overexpressed in almost all prostate cancers. TRIM24 is also up-regulated from localized prostate cancer to metastatic castration-resistant prostate cancer (CRPC). Because of the high relevance of TRIM24 for cancer development and the universal expression of PSMA in CPRC, we investigated the efficacy of human monoclonal PSMA antibody (PSMAb)-based platform for the targeted TRIM24 siRNA delivery and its therapeutic efficacy in CRPC in vivo and in vitro. Methods: The therapeutic complexes were constructed by conjugating PSMAb and sulfo-SMCC-protamine, and encapsulating TRIM24 siRNA. Flow cytometry, immunofluorescence, and fluorescence imaging were performed to detect the receptor-binding, internalization, and targeted delivery of PSMAb-sulfo-SMCC-protamine (PSP)-FAM-siRNA complex (PSPS) in vitro and in vivo. CCK-8, plate-colony formation, apoptosis, cell cycle, and Transwell assays were performed to evaluate the therapeutic potential of the PSP-TRIM24 siRNA complex in vitro, whereas the in vivo therapeutic efficacy was monitored by small animal imaging, radiography, and micro CT. Results: We confirmed that PSP could efficiently protect siRNA from enzymatic digestion, enable targeted delivery of siRNA, and internalize and release siRNA into PSMA-positive (PSMA+) prostate cancer cells in vitro and in vivo. Silencing TRIM24 expression by the PSP-TRIM24 siRNA complex could dramatically suppress proliferation, colony-formation, and invasion of PSMA+ CRPC cells in vitro, and inhibit tumor growth of PSMA+ CRPC xenografts and bone loss in PSMA+ CRPC bone metastasis model without obvious toxicity at therapeutic doses in vivo. Conclusion: PSMAb mediated TRIM24 siRNA delivery platform could significantly inhibit cell proliferation, colony-formation, and invasion in PSMA+ CRPC in vitro and suppressed tumor growth and bone loss in PSMA+ CRPC xenograft and bone metastasis model.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antigens, Surface/immunology , Carrier Proteins/antagonists & inhibitors , Glutamate Carboxypeptidase II/immunology , Molecular Targeted Therapy/methods , Prostatic Neoplasms, Castration-Resistant/drug therapy , RNA, Small Interfering/administration & dosage , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Male , Mice, Nude , Models, Theoretical , Therapeutic Uses , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
14.
J Cardiovasc Pharmacol ; 73(2): 70-81, 2019 02.
Article in English | MEDLINE | ID: mdl-30422891

ABSTRACT

Previous studies have shown that κ-opioid receptor activation possesses cardioprotection against myocardial ischemia and reperfusion (MI/R) injury. The current study was designed to investigate whether mitochondrial dysfunction after MI/R is regulated by the κ-opioid receptor and to further explore the underlying mechanisms involved. MI/R rat model was established in vivo, and a hypoxia and reoxygenation cardiomyocytes model was used in vitro. Mitochondrial morphology and function as well as myocardial apoptosis were determined. Our data indicated that treatment with U50,488H (a selective κ-opioid receptor agonist) not only reduced apoptosis but also significantly improved mitochondrial morphology and function. These effects were blocked by nor-binaltorphimine (nor-BNI, a selective κ-opioid receptor antagonist), Compound C (an AMPK inhibitor), and AR-A014418 (a GSK3ß inhibitor). Moreover, in cardiomyocytes, treatment with U50,488H significantly increased the expression in phosphorylation of AMPK and the phosphorylation of GSK3ß. Treatment of cardiomyocytes with AMPKα siRNA decreased the phosphorylation of AMPK and GSK3ß. Moreover, AMPK activation resulted in the phosphorylation of GSK3ß. Our findings suggested that U50,488H exerted cardioprotective effects by improving mitochondrial morphology and function against MI/R injury through activation of the κ-opioid receptor-mediated AMPK/GSK3ß pathway.


Subject(s)
3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Mitochondria, Heart/drug effects , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Receptors, Opioid, kappa/agonists , AMP-Activated Protein Kinases/genetics , Animals , Cell Line , Disease Models, Animal , Male , Mitochondria, Heart/enzymology , Mitochondria, Heart/ultrastructure , Myocardial Infarction/enzymology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/ultrastructure , Phosphorylation , Rats, Sprague-Dawley , Receptors, Opioid, kappa/metabolism , Signal Transduction
15.
Eur J Pharmacol ; 833: 100-108, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29856969

ABSTRACT

This study aims to investigate the effect of κ-opioid receptor activation on myocardial ischemia and reperfusion(I/R) injury and elucidate the underlying mechanisms. Myocardial I/R rat model and simulated I/R cardiomyocytes model were established. In vivo study showed that U50,488 H improved cardiac function, reduced myocardial infarct size and serum cTnT significantly. The effect of U50,488 H was abolished by nor-BNI(a κ-opioid receptor antagonist), Compound C(an AMPK inhibitor), Akt inhibitor and L-NAME(an eNOS inhibitor). AICAR, an AMPK activator, mimicked the effect of U50,488 H. U50,488 H up-regulated p-AMPK, p-Akt, and p-eNOS, which were abolished by nor-BNI. AICAR increased p-Akt and p-eNOS, which was abolished by Compound C. In vitro study showed that U50,488 H increased p-AMPK, p-Akt, and p-eNOS via κ-OR activation. The effect of U50,488 H on p-AMPK was abolished by compound C, but not Akt inhibitor and L-NAME. The effect of U50,488 H on p-Akt was abolished by compound C and Akt inhibitor, but not L-NAME. AICAR increased p-Akt and p-eNOS, which was abolished by Akt inhibitor, but not L-NAME. U50,488 H and AICAR also increased the viability of cardiomyocytes subjected to simulated I/R, the effects of U50,488 H and AICAR were blocked by nor-BNI, Compound C, Akt inhibitor, and L-NAME, respectively. In conclusion, κ-OR activation confers cardioprotection via AMPK/Akt/eNOS signaling.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Myocardial Reperfusion Injury/metabolism , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Opioid, kappa/metabolism , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use , AMP-Activated Protein Kinases/antagonists & inhibitors , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Aminoimidazole Carboxamide/therapeutic use , Animals , Cell Line , Cell Survival/drug effects , Male , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Rats, Sprague-Dawley , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/antagonists & inhibitors , Ribonucleotides/pharmacology , Ribonucleotides/therapeutic use , Signal Transduction , Troponin T/blood
16.
Med Sci Monit ; 24: 1034-1043, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29457966

ABSTRACT

BACKGROUND Histone acetylation and DNA methylation are important mammalian epigenetic modifications that participate in the regulation of gene expression. Because dysregulation of histone deacetylase and DNA methyltransferases are hallmarks of malignancy, they have become promising therapeutic targets. In this study, we explored the anti-tumor activity of valproic acid (VPA), a histone deacetylase inhibitor (HDACi) and 5-Aza-2'-deoxycytidine (5-Aza), an inhibitor of DNA methyltransferases, on renal cell carcinoma (RCC) cell lines 786-O and 769-P. MATERIAL AND METHODS The cell proliferation was detected by xCELLigence RTCA DP Instrument, viability by CCK8 assay, cell apoptosis and cell cycle by flow cytometry, and cell migration by wound healing assay, Transwell assay and xCELLigence RTCA DP Instrument. RESULTS We discovered that VPA and 5-Aza could individually induce decreased viability and have an inhibitory effect on the proliferation of 786-O and 769-P cells. This anti-growth effect was more pronounced when the cells were treated with both VPA and 5-Aza. The combination of VPA and 5-Aza also elicited more apoptosis and produced more cell cycle arrest in the G1 phase for both cell lines. On the other hand, treatment of RCC cells with VPA, 5-Aza, or a combination of both resulted in slow wound healing and impaired migration. CONCLUSIONS These findings clearly demonstrated that VPA combined with 5-Aza could significantly increase anti-RCC effects by inhibiting cellular proliferation, inducing apoptosis, promoting cell cycle arrest and prohibiting the migration of human RCC cells.


Subject(s)
Azacitidine/analogs & derivatives , Carcinoma, Renal Cell/pathology , Cell Movement/drug effects , Kidney Neoplasms/pathology , Valproic Acid/pharmacology , Apoptosis/drug effects , Azacitidine/pharmacology , Azacitidine/therapeutic use , Carcinoma, Renal Cell/drug therapy , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Decitabine , Drug Synergism , G1 Phase/drug effects , Humans , Kidney Neoplasms/drug therapy , Valproic Acid/therapeutic use
17.
Cancer Sci ; 109(4): 1012-1023, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29397041

ABSTRACT

The cell cycle-related and expression-elevated protein in tumor (CREPT) is overexpressed in several human malignancies. However, the clinical relevance of CREPT expression and its biological role in non-small-cell lung cancer (NSCLC) remains unclear. In this study, we detected the expression of CREPT in both NSCLC tissues and cell lines by immunohistochemistry, Western blot analysis, and RT-PCR. The correlation between CREPT expression and clinicopathologic features was analyzed in 271 NSCLC patients. The prognostic value of CREPT expression was evaluated by Kaplan-Meier analysis and Cox regression analysis. CREPT was overexpressed in Calu-1 cell lines by using plasmid vector and its biological function was explored both in vitro and in vivo. We found that CREPT was significantly overexpressed in NSCLC compared with paired adjacent non-tumor tissues, and the expression level of CREPT was correlated with tumor differentiation, lymph node metastasis, and clinical stage. Kaplan-Meier analysis showed that the recurrence-free survival and overall survival of high CREPT expression groups were significantly shorter than those of the low CREPT expression group. Multivariate analysis identified that CREPT might be an independent biomarker for the prediction of NSCLC prognosis. Overexpression of CREPT increased cell proliferation and enhanced the migration and invasion ability of Calu-1 cells (a human NSCLC cell line with relative low CRPET expression) in vitro. Moreover, CREPT overexpression promoted tumor growth in a nude mice model. These results suggest that CREPT is closely relevant to the proliferation of NSCLC cells and it might be a potential prognostic marker in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cell Proliferation/physiology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasm Proteins/metabolism , A549 Cells , Animals , Biomarkers, Tumor/metabolism , Cell Differentiation/physiology , Cell Line, Tumor , Disease-Free Survival , Female , Humans , Lymphatic Metastasis/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Prognosis
18.
Cancer Immunol Immunother ; 67(3): 393-401, 2018 03.
Article in English | MEDLINE | ID: mdl-29127433

ABSTRACT

Chimeric antigen receptor-modulated T lymphocytes (CAR-T) have emerged as a powerful tool for arousing anticancer immunity. Endogenous ligands for tumor antigen may outperform single-chain variable fragments to serve as a component of CARs with high cancer recognition efficacy and minimized immunogenicity. As heterodimerization and signaling partners for human epidermal growth factor receptor 2 (HER2), HER3/HER4 has been implicated in tumorigenic signaling and therapeutic resistance of breast cancer. In this study, we engineered T cells with a CAR consisting of the extracellular domain of heregulin-1ß (HRG1ß) that is a natural ligand for HER3/HER4, and evaluated the specific cytotoxicity of these CAR-T cells in cultured HER3 positive breast cancer cells and xenograft tumors. Our results showed that HRG1ß-CAR was successfully constructed, and T cells were transduced at a rate of 50%. The CAR-T cells specifically recognized and killed HER3-overexpressing breast cancer cells SK-BR-3 and BT-474 in vitro, and displayed potent tumoricidal effect on SK-BR-3 xenograft tumor models. Our results suggest that HRG1ß-based CAR-T cells effectively suppress breast cancer driven by HER family receptors, and may provide a novel strategy to overcome cancer resistance to HER2-targeted therapy.


Subject(s)
Breast Neoplasms/therapy , Cell- and Tissue-Based Therapy , Neuregulin-1/metabolism , Receptor, ErbB-3/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Animals , Apoptosis , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Proliferation , Cells, Cultured , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Oncotarget ; 8(52): 90028-90036, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29163808

ABSTRACT

It is widely acknowledged that interleukin 17-producing T helper (Th17) cells are critically participant in the pathogenesis of multiple sclerosis. In the current study, we identified that the expression of CD4+T cells specific co-inhibitory molecule B7-homologue 1(B7-H1) in spleenocytes and mononuclear cells isolated from brains and spinal cord were positive correlated with Th1 and Th17 cells generation and disease severity in experimental autoimmune encephalomyelitis (EAE). Furthermore, B7-H1 transgenic mice developed milder EAE symptoms and fewer Th17 cells than B7-H1 wild type mice. We also found the proliferation of naïve CD4+CD62+T cells isolated from B7-H1 transgenic mice was inhibited. And naïve T cells isolated from B7-H1 transgenic mice produced fewer Th17 cells than WT mice in Th17-polarizing conditions, but the Th1, Th2, and inducible Treg differentiation were the similar in naïve T cells isolated from B7-H1 transgenic mice and WT mice. In conclusion, our study show CD4+T cells specific B7-H1 is a slective inhibitor in proliferation of naïve T cells, Th17 differentiation and pathogenesis of multiple sclerosis.

20.
Oncotarget ; 8(3): 5323-5338, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28029659

ABSTRACT

RNF2, also known as RING1b or RING2, is identified as the catalytic subunit of polycomb repressive complex 1 (PRC1), which mediates the mono-ubiquitination of histone H2A. RNF2 has been proved to have oncogenic function in many kinds of cancers, but the function of RNF2 in prostate cancer (PCa) has not been evaluated. Here we show that PCa tissues showed higher RNF2 expression than the benign prostatic hyperplasia (BPH) tissues. Knockdown of RNF2 in PCa cells resulted in cell cycle arrest, increased apoptosis and inhibited cell proliferation, and the growth of RNF2 knockdown PCa xenografts were obviously inhibited in nude mice. Gene microarray analysis was performed and tumor suppressor gene TXNIP was found to be significantly increased in RNF2 knockdown cells. Simultaneously knockdown of RNF2 and TXNIP can partially rescue the arrested cell cycle, increased apoptosis and inhibited cell proliferation in RNF2 single knockdown cells. Furthermore, ChIP assay result showed that RNF2 enriched at the TXNIP promoter, and the enrichment of RNF2 and ubiquitination of H2A in TXNIP promoter was obviously inhibited in RNF2 knockdown cells. In conclusion, our results demonstrate that RNF2 functions as an oncogene in PCa and RNF2 may regulate the progression of PCa through the inhibition of TXNIP.


Subject(s)
Carrier Proteins/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Prostatic Neoplasms/pathology , Up-Regulation , Animals , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Nude , Neoplasm Grading , Neoplasm Transplantation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...