Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38657125

ABSTRACT

Cuprous thiocyanate (CuSCN) emerges as a prime candidate among inorganic hole-transport materials, particularly suitable for the fabrication of perovskite solar cells. Nonetheless, there is an Ohmic contact degradation between the perovskite and CuSCN layers. This is induced by polar solvents and undesired purities, which reduce device efficiency and operational stability. In this work, we introduce amidinothiourea (ASU) as an intermediate layer between perovskites and CuSCN to overcome the above obstacles. The characterization results confirm that ASU-modified perovskites have eliminated trap-induced defects by strong chemical bonding between -NH- and C═S from ASU and under-coordinated ions in perovskites. The interfacial engineering based on the ASU also reduces the potential barrier between the perovskite and CuSCN layers. The ASU-treated perovskite solar cells (PSC) with a gold electrode obtains an improved power conversion efficiency (PCE) from 16.36 to 18.03%. Furthermore, after being stored for 1800 h in ambient air (relative humidity (RH) = 45%), the related device without encapsulation maintains over 90% of its initial efficiency. The further combination of ASU and carbon-tape electrodes demonstrates its potential to fabricate low-cost but stable carbon-based PSCs. This work finds a universal approach for the fabrication of efficient and stable PSCs with different device structures.

2.
Article in English | MEDLINE | ID: mdl-38662416

ABSTRACT

Electron-beam-evaporated nickel oxide (NiOx) films are known for their high quality, precise control, and suitability for complex structures in perovskite (PVK) solar cells (PSCs). However, untreated NiOx films have inherent challenges, such as surface defects, relatively low intrinsic conductivity, and shallow valence band maximum, which seriously restrict the efficiency and stability of the devices. To address these challenges, we employ a dual coordination optimization strategy. The strategy includes low heating rate annealing of NiOx films and using an aminoguanidine nitrate spin coating process on the surfaces of NiOx films to strategically modify NiOx films itself and the interface of NiOx/PVK. Under the synergistic effect of this dual optimization method, the quality of the films is significantly improved and its p-type characteristics are enhanced. At the same time, the interface defects and energy level alignment of the films are effectively improved, and the charge extraction ability at the interface is improved. The combined treatment significantly improved the efficiency of inverted PSCs, from 17.85% to 20.31%, and enhanced device stability under various conditions. This innovative dual-coordinated optimization strategy provides a clear and effective framework for improving the performance of NiOx films and inverted PSCs.

3.
Int J Neurosci ; : 1-8, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38506641

ABSTRACT

BACKGROUND: This study investigates the correlation between serum α-synuclein and abnormal electroencephalography patterns as well as the electroencephalographic discharge index in children with epilepsy. METHODS: Fasting venous blood of 4 ml were collected from the participants, centrifuged at 3000 rpm with a centrifuge radius of 15 cm for 20 min, and stored in a -70 °C freezer for serum α-synuclein examination. Normal EEG: Exhibits symmetrical α or ß rhythm primarily in the occipital region. RESULTS: The electroencephalogram (EEG) examination results showed that out of the 110 children with epilepsy, 9 had normal EEGs, 35 had mild EEG abnormalities, 46 had moderate EEG abnormalities, and 20 had severe EEG abnormalities. It is noteworthy that the control group did not exhibit any abnormalities in EEG. In the epilepsy group, serum α-synuclein levels were higher than those in the normal group, while α-wave power and θ-wave power were lower than in the normal group (p < 0.05). Among children with epilepsy, those with mild EEG abnormalities, moderate EEG abnormalities, and severe EEG abnormalities had higher serum α-synuclein levels and electroencephalographic discharge indices compared to children with normal EEGs (p < 0.05). Additionally, among children with EEG abnormalities, those with mild, moderate, and severe EEG abnormalities had progressively increasing serum α-synuclein levels and electroencephalographic discharge indices (p < 0.05). CONCLUSIONS: Children with epilepsy exhibit elevated serum α-synuclein levels, and there is a positive correlation between α-synuclein levels and the grading of EEG abnormalities as well as the electroencephalographic discharge index.

4.
ChemSusChem ; : e202301722, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38487956

ABSTRACT

Nickel oxide (NiOX) is an ideal inorganic hole transport material for the fabrication of inverted perovskite solar cells owing to its excellent optical and semiconductor properties. Currently, the main research on developing the performance of NiOX-based perovskite solar cells focuses on improving the conductivity of NiOX thin films and preventing the redox reactions between metal cations (Ni3+ on the surface of NiOX) and organic cations (FA+ or MA+ in the perovskite precursors) at the NiOX/perovskite interface. In this study, a new type of interface defects in NiOX-based CsPbI2Br solar cells is reported. That is the Pb2+ from CsPbI2Br perovskites can diffuse into the lattice of NiOX surface as the annealing temperature of perovskites changes. The diffusion of Pb2+ increases the ratio of Ni3+/Ni2+ on the surface of NiOX, leading to an increase in the density of trap state at the interface between NiOX and perovskites, which eventually results in a serious decline in the photovoltaic performance of solar cells.

5.
ACS Appl Mater Interfaces ; 16(7): 9388-9399, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324460

ABSTRACT

Bifacial passivation on both electron transport materials and perovskite light-absorbing layers as a straightforward technique is used for gaining efficient and stable perovskite solar cells (PSCs). To develop this strategy, organic molecules containing multiple functional groups can maximize the effect of defect suppression. Based on this, we introduce N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) at the interface between tin oxide (SnO2) and perovskite. The synergistic effect of multiple functional groups in ACES, including amino, carbonyl (C═O), and sulfonic acid (S═O) groups, promotes charge extraction of SnO2 and provides an improved energy level alignment for charge transfer. Furthermore, S═O in ACES effectively passivates the defects of uncoordinated Pb2+ in perovskite films, resulting in enhanced crystallinity and decreased nonradiative recombination at the buried interface. The power conversion efficiency (PCE) of related PSCs increases from 20.21% to 22.65% with reduced J-V hysteresis after interface modification with ACES. Notably, upon being stored at a low relative humidity of 40 ± 5% over 2000 h and high relative humidity of 80 ± 5% over 1000 h, the unencapsulated ACES-modified device retains up to 90% and 80% of their initial PCE, respectively. This study deepens defect passivation engineering on the buried interface of perovskites for realizing efficient and stable solar cells.

6.
ACS Omega ; 8(13): 12430-12438, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033797

ABSTRACT

The vapor-solid reaction method (VRM) is one of the promising techniques to prepare high-performance perovskite solar cells. Herein, PbI2 precursor films were prepared by vacuum evaporation. It was found that the PbI2 precursor films exhibit high crystallinity and orderly morphology at the substrate temperature of 110 °C. On this basis, the precursor films were prepared by VRM to obtain high-quality perovskite films and the power conversion efficiency (PCE) of perovskite solar cells (PSCs) devices reached 17.1%. In contrast, the PbI2 film precursor was prepared on the substrate without being heated and the PCE of the final PSCs devices was only 13.04%.

7.
Small ; 19(20): e2207445, 2023 May.
Article in English | MEDLINE | ID: mdl-36840662

ABSTRACT

Poor carrier transport capacity and numerous surface defects of charge transporting layers (CTLs), coupled with misalignment of energy levels between perovskites and CTLs, impact photoelectric conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) profoundly. Herein, a collaborative passivation strategy is proposed based on 4-(chloromethyl) benzonitrile (CBN) as a solution additive for fabrication of both [6,6]-phenyl-C61-butyric acid methylester (PCBM) and poly(triarylamine) (PTAA) CTLs. This additive can improve wettability of PTAA and reduce the agglomeration of PCBM particles, which enhance the PCE and device stability of the PSCs. As a result, a PCE exceeding 20% with a remarkable short circuit current of 23.9 mA cm-2 , and an improved fill factor of 81% is obtained for the CBN- modified inverted PSCs. Devices maintain 80% and 70% of the initial PCE after storage under 30% and 85% humidity ambient conditions for 1000 h without encapsulation, as well as negligible light state PCE loss. This strategy demonstrates feasibility of the additive engineering to improve interfacial contact between the CTLs and perovskites for fabrication of efficient and stable inverted PSCs.

8.
Front Pediatr ; 9: 631673, 2021.
Article in English | MEDLINE | ID: mdl-33643978

ABSTRACT

Objective: To perform a meta-analysis of randomized controlled trials verifying clinical efficacy and safety of propranolol in pre-term newborns with retinopathy of prematurity (ROP). Methods: We searched the literature databases (Pubmed, Embase, The Cochrane Library, Web of Science, CNKI, WanFang, VIP, CBM) for publications before August 10, 2020, and the World Health Organization's International Clinical Trials Registry and ClinicalTrials.gov for ongoing trials. Randomized controlled trials (RCTs) of propranolol for the prevention or treatment of ROP were included. The quality of the included studies was primarily assessed by the RCT tool of the Cochrane Collaboration. The included studies were quantified using a meta-analysis of relative risk (RR) estimated with a random effect model. Results: Our original search identified 171 articles, and five studies met our criteria. A meta-analysis was performed that showed that infants orally treated with propranolol had a decreased risk of disease progression: stage progression had an RR = 0.65 [95% confidence interval (CI), 0.47-0.88]), plus disease had an RR = 0.43 [95% CI, 0.22-0.82]. The demands for additional treatments had similar protective results: laser photocoagulations had an RR = 0.55 [95% CI, 0.35-0.86]), and intravitreal injection of anti-vascular endothelial growth factor had an RR = 0.45 [95% CI, 0.22-0.90]). The oral administration of propranolol was associated with an increased risk of adverse events (RR = 2.01 [95% CI, 1.02-3.97]). High-risk adverse events included bradycardia, hypotension, not gaining enough weight, bronchospasm, hypoglycemia, apnea, and increasing ventilator need. Subgroup analysis of ROP phases and stages found that the risk in stage 2 ROP of the second phase and the individual risk factors (stage progression, RR = 0.42 [95% CI, 0.27-0.65]; plus disease, RR = 0.40 [95% CI, 0.17-0.93]; laser photocoagulation, RR = 0.31 [95% CI, 0.14-0.68]) have statistically significant differences compared with other phases and stages. Conclusions: Pre-term newborns with ROP, especially in stage 2 ROP of the second phase, who were orally given propranolol have a reduced risk of disease progression and demand for additional treatments, but the safety needs more attention.

9.
Nanoscale Res Lett ; 14(1): 281, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31420778

ABSTRACT

Herein, γ-AlO(OH) as an inorganic was successfully inserted into MgAl-LDH layer by a one-pot synthesis, the composite as an adsorbent for removing methyl orange (MO) from wastewater. The structure and adsorption performance of γ-AlO(OH)/MgAl-LDH were characterized. The research shows that the expansion (003) plane and the hydroxyl active site of γ-AlO(OH)/MgAl-LDH can promote adsorption capacity and adsorption kinetics, respectively. Therefore, γ-AlO(OH)/MgAl-LDH exhibits a super adsorption performance, which completely adsorbs MO at the concentration of 1000 mg g-1. In addition, the maximum adsorption capacity of MO was 4681.40 mg g-1 according to the Langmuir model. These results indicate that γ-AlO(OH)/MgAl-LDH is a potential adsorbent for the removal of organic dyes in water.

10.
RSC Adv ; 9(42): 24280-24290, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-35527890

ABSTRACT

A new photocatalyst, few-layer MoS2 grown in MgAl-LDH interlayers (MoS2/MgAl-LDH), was prepared by a facile two-step hydrothermal synthesis. The structural and photocatalytic properties of the obtained material were characterized by several techniques including powder X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and UV-vis absorption spectroscopy. The MoS2/MgAl-LDH composite showed excellent photocatalytic performance for methyl orange (MO) degradation at low concentrations (50 mg L-1 and 100 mg L-1). Furthermore, even for a MO solution concentration as high as 200 mg L-1, this composite also presented high degradation efficiency (>84%) and mineralization efficiency (>73%) at 120 min. The results show that the MoS2/MgAl-LDH composite has great potential for application in wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...