Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 132: 104264, 2021 07.
Article in English | MEDLINE | ID: mdl-34081960

ABSTRACT

Visible genetic markers are critical to gene function studies using genome editing technology in insects. However, there is no report about visible phenotypic markers in Apis mellifera, which extremely influences the application of genomic editing in honey bees. Here, we cloned and characterized the Amyellow-y gene in A. mellifera. Stage expression profiles showed that Amyellow-y gene was highly expressed in 2-, 4-day-old pupae, and newly emerged bees, and a high expression level was detected in the leg, thorax, wing and sting. To understand its functional role in pigmentation, Amyellow-y edited honeybees were created using CRISPR/Cas9, and it was found that the black pigment was decreased in the cuticle of mosaic workers and mutant drones. In particular, mutant drones manifested an overall appearance of yellowish cuticle in the body and appendages, including antennae, wings and legs, indicating that mutagenesis induced by disruption of Amyellow-y with CRISPR/Cas9 are heritable. Furthermore, the expression levels of genes associated with melanin pigmentation was investigated in mutant and wild-type drones using quantitative reverse transcription PCR. Transcription levels of Amyellow-y and aaNAT decreased markedly in mutant drones than that in wild-type ones, whereas laccase 2 was significantly up-regulated. Our results provide the first evidence, to our knowledge, that CRISPR/Cas9 edited G1 mutant drones of A. mellifera have a dramatic body pigmentation defect that can be visualized in adults, suggesting that Amyellow-y may serve as a promising visible phenotypic marker for genome editing in honey bees.


Subject(s)
Bees/genetics , CRISPR-Cas Systems , Gene Editing/methods , Genetic Markers , Animals , Bees/metabolism , Genes, Insect , Insect Proteins/genetics , Insect Proteins/metabolism , Melanins , Pigmentation/genetics , Transcription Factors/genetics
2.
Rep Prog Phys ; 84(7)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-33882459

ABSTRACT

The description of strong interaction physics of low-lying resonances is out of the valid range of perturbative QCD. Chiral effective field theories (EFTs) have been developed to tackle the issue. Partial wave dynamics is the systematic tool to decode the underlying physics and reveal the properties of those resonances. It is extremely powerful and helpful for our understanding of the non-perturbative regime, especially when dispersion techniques are utilized simultaneously. Recently, plenty of exotic/ordinary hadrons have been reported by experiment collaborations, e.g. LHCb, Belle, and BESIII, etc. In this review, we summarize the recent progress on the applications of partial wave dynamics combined with chiral EFTs and dispersion relations, on related topics, with emphasis onππ,πK,πNandK̄Nscatterings.

SELECTION OF CITATIONS
SEARCH DETAIL
...