Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Animal Model Exp Med ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973219

ABSTRACT

In traditional Chinese medicine (TCM), based on various pathogenic symptoms and the 'golden chamber' medical text, Huangdi Neijing, diabetes mellitus falls under the category 'collateral disease'. TCM, with its wealth of experience, has been treating diabetes for over two millennia. Different antidiabetic Chinese herbal medicines reduce blood sugar, with their effective ingredients exerting unique advantages. As well as a glucose lowering effect, TCM also regulates bodily functions to prevent diabetes associated complications, with reduced side effects compared to western synthetic drugs. Chinese herbal medicine is usually composed of polysaccharides, saponins, alkaloids, flavonoids, and terpenoids. These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion, enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals. These actions regulate glycolipid metabolism in the body, eventually achieving the goal of normalizing blood glucose. Using different animal models, a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer. Nonetheless, there is a dearth of scientific data about the pharmacology, dose-effect relationship, and structure-activity relationship of TCM and its constituents. Further research into the efficacy, toxicity and mode of action of TCM, using different metabolic and molecular markers, is key to developing novel TCM antidiabetic formulations.

2.
Dalton Trans ; 53(11): 5034-5042, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38374728

ABSTRACT

The construction and investigation of dual-functional coordination polymers (CPs) with proton conduction and luminescence sensing is of great significance in clean energy and agricultural monitoring fields. In this work, an Mn-based coordination polymer (Mn-CP), namely, [Mn0.5(HL)] (H2L = HOOCC6H4C6H4CH2PO(OH)OCH3), was hydrothermally synthesized. Mn-CP has a one-dimensional (1D) chain structure, in which uncoordinated -COOH groups can serve as potential sites for fluorescence sensing. Moreover, Mn-CP shows good water and pH stabilities, offering the feasibility for proton conduction and sensing applications. Mn-CP displays comparatively high proton conductivity of 1.07 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), which is promising for proton conduction materials. Moreover, it can serve as a repeatable, highly selective, and visualized fluorescence sensor for detecting oxytetracycline (OTC). More importantly, Mn-CP reveals an amazing quantitative sensing of OTC in actual samples such as seawater, aquaculture freshwater, soil infiltration solutions, and tap water. This work proves the excellent application potential of dual-functional CPs in the field of clean energy and environmental protection, especially for the fluorescence detection of antibiotics in aquaculture systems.

3.
Inorg Chem ; 62(32): 12730-12740, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37529894

ABSTRACT

The construction of attractive dual-functional lanthanide-based metal-organic frameworks (Ln-MOFs) with ratiometric fluorescent detection and proton conductivity is significant and challenging. Herein, a three-dimensional (3D) Eu-MOF, namely, [Eu4(HL)2(SBA)4(H2O)6]·9H2O, has been hydrothermally synthesized with a dual-ligand strategy, using (4-carboxypiperidyl)-N-methylenephosphonic acid (H3L = H2O3PCH2-NC5H9-COOH) and 4-sulfobenzoic acid monopotassium salt (KHSBA = KO3SC6H4COOH) as organic linkers. Eu-MOF showed ratiometric fluorescent broad-spectrum sensing of benzophenone-like ultraviolet filters (BP-like UVFs) with satisfactory sensitivity, selectivity, and low limits of detection in water/ethanol (1:1, v/v) solutions and real urine systems. A portable test paper was prepared for the convenience of actual detection. The potential sensing mechanisms were thoroughly analyzed by diversified experiments. The synergistic effect of the forbidden energy transfer from the ligand to Eu3+, the internal filtration effect (IFE), the formation of a complex, and weak interactions between the KHSBA ligand and BP-like UVFs is responsible for the ratiometric sensing effect. Meanwhile, Eu-MOF displayed relatively high proton conductivity of 2.60 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), making it a potential material for proton conduction. This work provides valuable guidance for the facile and effective design and construction of multifunctional Ln-MOFs with promising performance.

4.
Dalton Trans ; 52(25): 8558-8566, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37288585

ABSTRACT

By selecting a bisphosphonic ligand H4L (H4L = 4-F-C6H4CH2N(CH2PO3H2)2) and a coligand oxalate (H2C2O4), three isostructural lanthanide metal-organic frameworks (Ln-MOFs) with a 2D layer structure, [Ln(H3L)(C2O4)]·2H2O (Ln = Eu (1), Gd (2), or Tb (3)), were hydrothermally prepared. By tuning the molar ratio of Eu3+, Gd3+, and Tb3+ in the above reactions, six bimetallic or trimetallic doped Ln-MOFs (EuxTb1-x (x = 0.02 (4), 0.04 (5), and 0.06 (6)), Gd0.94Eu0.06 (7), Gd0.96Tb0.04 (8) and Gd0.95Tb0.03Eu0.02 (9)) were obtained. The powder X-ray diffraction (PXRD) patterns of doped Ln-MOFs 4-9 show that they are isomorphous with 1-3. The bimetallic doped Ln-MOFs show a gradual variation of luminous colors between yellow-green, yellow, orange, pink, and light blue. Meanwhile, the trimetallic doped Gd0.95Tb0.03Eu0.02 Ln-MOF (9) displays near white-light emission with a quantum yield of 11.39%. Interestingly, the luminous inks of 1-9 are invisible and color tunable, which makes it possible to promote their anti-counterfeiting applications. Additionally, 3 displays good thermal, water, and pH stabilities, which provides the feasibility for its sensing application. The luminescence sensing experiments show that 3 can serve as a highly selective, reusable, and ratiometric luminescent sensor of sulfamethazine (SMZ). Moreover, 3 shows an excellent SMZ detection performance in real samples, such as mariculture water and real urine. Owing to the visible variation of the response signal under a UV lamp, portable SMZ test paper was prepared.

5.
Inorg Chem ; 62(16): 6323-6331, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37043704

ABSTRACT

Luminescent Zn(II) complexes that respond to external stimuli are of wide interest due to their potential applications. Schiff base with O,N,O-hydrazone shows excellent luminescence properties with multi-coordination sites for different coordination modes. In this work, three salicylaldehyde hydrazone Zn(II) complexes (1, 2a, 2b) were synthesized and their stimuli-responsive behaviors in different states were explored. Only complex 1 exhibits reversible and self-recoverable photochromic and photoluminescence properties in solution. This may be due to the configuration eversion and the excited-state intramolecular proton transfer (ESIPT) process. In the solid state, 2a has obvious mechanochromic luminescence property, which is caused by the destruction of intermolecular interactions and the transformation from crystalline state to amorphous state. 2a and 2b have delayed fluorescence properties due to effective halogen bond interactions in structures. 2a could undergo crystal-phase transformation into its polymorphous 2b by force/vapor stimulation. Interestingly, 2b shows photochromic property, which can be attributed to the electron transfer and generation of radicals induced by UV irradiation. Due to different conformations and coordination modes, the three Zn(II) complexes show different stimuli-responsive properties. This work presents the multi-stimuli-responsive behaviors of salicylaldehyde hydrazone Zn(II) complexes in different states and discusses the response mechanism in detail, which may provide new insights into the design of multi-stimuli-responsive materials.

6.
Dalton Trans ; 52(16): 5202-5211, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36970992

ABSTRACT

Developing high-accuracy luminescent sensors for detecting emerging environmental pollutants is of great importance and is still a challenge. Utilizing a 4-carboxyphenylphosphonic acid (H3pbc) ligand, a novel one-dimensional (1D) Zn-based coordination polymer with the formula [Zn2(Hpbc)2(2,2'-bipy)(H2O)]·H2O (Zn-CP, H3pbc = 4-HOOCC6H4PO3H2, 2,2'-bipy = 2,2'-bipyridine) has been hydrothermally synthesized. Each of the 1D chains was linked via π-π stacking interactions and formed a supramolecular framework. Furthermore, due to the existence of uncoordinated -COOH groups, the terbium-functionalized hybrid (Tb3+@Zn-CP) was prepared by introducing Tb3+ ions into the structure through coordinated postsynthetic modification (PSM). Tb3+@Zn-CP shows the characteristic emission of Tb3+ ions due to the "antenna effect" of the H3pbc ligand. Based on the excellent luminescence properties and structural stabilities of Zn-CP and Tb3+@Zn-CP, they can be used as highly sensitive and selective luminescent probes of the UV filter BP (benzophenone) depending on multiquenching effects. In addition, their obvious color change can be easily distinguished by the naked eye under ultraviolet light, which was successfully used in the preparation of portable BP test paper. More importantly, Tb3+@Zn-CP is the first example of CPs as a ratiometric luminescent sensor for BP. This work provides a novel strategy for the construction of ratiometric luminescent probes of BP-type UVFs through coordinated postsynthetic modification.

7.
ACS Appl Mater Interfaces ; 15(1): 1495-1504, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36579462

ABSTRACT

An in-depth understanding of structure-property relationships and the construction of multifunctional stimuli-responsive materials are still difficult challenges. Herein, we discovered a 4,4'-bipyridinium derivative with both photochromism and dynamic afterglow at 77 K for the first time. A one-dimensional (1D) Cd(II) coordination polymer (1) assembled by only a 4,4'-bipyridinium derivative and cadmium chloride showed photochromism, room-temperature phosphorescence (RTP), and electrochromism. Interestingly, we found that 1 underwent single-crystal-to-single-crystal transformation during the anion exchange process, and the color of the crystal changed from colorless to yellow (1-SCN-) within 10 min. Complex 1 exhibited photochromism, whereas 1-SCN- did not. The difference in the photochromic behavior between the two complexes was ascribed to the electron transfer pathway between the carboxylate groups and viologen. The DFT calculation based on the crystal structure of 1-SCN- indicated that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were mainly located on bipyridine and cadmium atoms, eliminating the possibility of electron transfer, whereas for complex 1, electron transfer was probable from O and Cl atoms to pyridinium N atoms in viologen as demonstrated by density of states (DOS) calculations. In addition, complex 1 was successfully made into test paper for the rapid detection of I- and SCN- and displayed potential applications in inkless printing, multiple encryption, and anticounterfeiting.

8.
Inorg Chem ; 61(40): 15973-15982, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36173106

ABSTRACT

Rational regulation of the properties of photochromic materials is a challenging and meaningful work. In the present work, NDI-based complexes, namely, [Cd0.5(NDI)(HBDC)]·H2O (1) and a series of conformational isomers of {[Cd(NDI)0.5(BDC)]·MeCN}n (2), were synthesized by varying the solvent conditions (H2BDC = terephthalic acid, NDI = N,N'-bis(3-pyridylcarbonylhydrazine)-1,4,5,8-naphthalene diimide). Complex 1 exhibits a 0D mononuclear structure without photochromic behavior due to the bad conjugation of the naphthalene diimide moiety. The conformational isomers of complex 2 manifest a 3D network, showing ultra-fast photo-induced intermolecular electron transfer photochromic behavior under X-ray, UV, and visible light. However, they show different photochromic rates and coloring contrast upon photoirradiation, which originates from their difference in the distances of lone pair(COO)···π(NDI). This was realized via controlling the solvent ratio in the reaction system. In addition, compared to UV/X-ray light, 2 exhibits greater sensitivity to visible light and is an organic-inorganic hybrid material with photomodulated luminescence. Based on the excellent performance, complex 2 can be applied to filter paper, showing potential applications as an inkless printing medium and selective perception of ammonia and amine vapors in the solid state via different visual color changes.

9.
Dalton Trans ; 51(40): 15370-15375, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36148666

ABSTRACT

The development of stimulus-responsive luminescent materials, especially those based on a single compound exhibiting multicolor and high-contrast (Δλem ≥ 100 nm) chromic properties, is a critical challenge. In this work, we synthesized and characterized a zinc(II) complex (1). As expected, 1 displays aggregation-induced emission enhancement (AIEE) in THF/H2O mixtures, and remarkable multicolor switching under external stimuli in the solid state. Complex 1 shows reversible mechanochromic luminescence behavior with a large wavelength shift (Δλem = 100 nm) during the grinding-fuming cycles, due to the phase transformation between the crystalline and amorphous states. More impressively, 1 exhibits obvious acidochromic properties (Δλem = 130 nm) which originate from the adsorption of vapor and a gas-solid reaction on the crystal surface. Furthermore, 1 exhibits electrochemical oxidation behavior accompanied by quenching of yellow-green emission due to the overlap of an emission band and an absorption band. The above-mentioned color changes under ambient light can also be observed by the naked eye during the mechanical, acid-base vapor and electrical stimulation. Based on the high-contrast and multicolor switching, complex 1 was successfully developed into test papers and films in the field of rapid detection of mechanical stimuli and HCl/NH3 vapors.

10.
Inorg Chem ; 61(19): 7513-7522, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35512196

ABSTRACT

Recently, stimuli-responsive materials have attracted great attention, while most of them respond to single or two stimuli. Thus, it is essential to design multifunctional stimuli-responsive materials and develop their applications. The strategy that constructing high-dimensional coordination polymers facilitates the application scope of a viologen-based photochromic system is put forward and confirmed for the first time. Herein, a novel multistimuli-responsive viologen-based Zn-MOF with a two-dimensional framework has been successfully designed and synthesized. Complex 1 exhibits chromic behavior under a variety of external stimuli such as 365 nm UV, X-rays, heat, electricity, and ethylamine. More interestingly, the crystal state of complex 1 displays dual fluorescence and room-temperature phosphorescence (RTP) emission and emits a yellow afterglow when turning off the UV lamp. In addition, Eu(III)-functionalized hybrids, Eu3+@Zn-MOF, were prepared by coordinated postsynthetic modification based on viologen complexes for the first time. The sample of Eu3+@Zn-MOF inherits the photochromic characteristics of the viologen complexes and gives the distinctive fluorescence of the europium ions. Based on the multicolor switching of 1 and Eu3+@Zn-MOF, their possible practical utilization was successfully developed in the fields of inkless, erasable print media, electrochromic information tag printing, information encryption, and anticounterfeiting.

11.
J Nanobiotechnology ; 20(1): 134, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35292019

ABSTRACT

BACKGROUND: Early detection of breast cancer lung metastasis remains highly challenging, due to few metastatic cancer cells at an early stage. Herein we propose a new strategy for early diagnosis of lung metastasis of breast cancer by luminescence imaging of pulmonary neutrophil infiltration via self-illuminating nanoprobes. METHODS: Luminescent nanoparticles (LAD NPs) were engineered using a biocompatible, neutrophil-responsive self-illuminating cyclodextrin material and an aggregation-induced emission agent. The chemiluminescence resonance energy transfer (CRET) effect and luminescence properties of LAD NPs were fully characterized. Using mouse peritoneal neutrophils, in vitro luminescence properties of LAD NPs were thoroughly examined. In vivo luminescence imaging and correlation analyses were performed in mice inoculated with 4T1 cancer cells. Moreover, an active targeting nanoprobe was developed by surface decoration of LAD NPs with a neutrophil-targeting peptide, which was also systemically evaluated by in vitro and in vivo studies. RESULTS: LAD NPs can generate long-wavelength and persistent luminescence due to the CRET effect. In a mouse model of 4T1 breast cancer lung metastasis, we found desirable correlation between neutrophils and tumor cells in the lungs, demonstrating the effectiveness of early imaging of the pre-metastatic niche by the newly developed LAD NPs. The active targeting nanoprobe showed further enhanced luminescence imaging capability for early detection of pulmonary metastasis. Notably, the targeting nanoprobe-based luminescence imaging strategy remarkably outperformed PET/CT imaging modalities in the examined mouse model. Also, preliminary tests demonstrated good safety of LAD NPs. CONCLUSIONS: The neutrophil-targeting imaging strategy based on newly developed luminescence nanoparticles can serve as a promising modality for early diagnosis of lung metastasis of breast cancers.


Subject(s)
Luminescence , Lung Neoplasms , Animals , Diagnostic Imaging , Early Diagnosis , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/secondary , Mice , Positron Emission Tomography Computed Tomography
12.
Dalton Trans ; 50(45): 16803-16809, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34766609

ABSTRACT

Multifunctional luminescent materials have attracted intensive interest. However, the mechanisms behind them are still to be explored. In this work, three Zn(II) complexes based on Schiff bases (HL1 and HL2) that contain rotatable aromatic rings were designed and prepared. They exhibited different mechanochromic luminescence (MCL) and acidochromism. The polymorphous ZnL12 and ZnL1a2 crystallize in different crystal systems with different conformations. The ligands in ZnL12 adopt a more twisted conformation than those in ZnL1a2. ZnL12 exhibits MCL with high contrast, while ZnL1a2 exhibits a negligible MCL property. This may be due to the looser packing of the complex induced by the more twisted conformation of the ligand HL1. ZnL12 could undergo crystal phase transformation into ZnL1a2 by grinding/fuming cycles. To increase the flexibility of the ligand, a methylene group was introduced to result in HL2, which can improve the mechanochromic luminescence effect of the Zn(II) complex with high color contrast. The ligands involved in coordination generally adopt a more twisted conformation than those free ligands due to the steric hindrance, resulting in more obvious MCL for complexes. By comparing the luminescence of ligands and their complexes under acid-base stimulation, it is found that the acidochromic properties could be attributed to the generation of ligands at the surface of complexes via the gaseous HCl-solid Zn(II) complex reaction. The high contrast mechanochromic and acidochromic luminescence properties would lead to promising potential applications of these complexes in smart fluorescent materials, and would also provide some ideas for the design of multi-stimuli responsive molecules.

13.
Inorg Chem ; 60(23): 17677-17686, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34784208

ABSTRACT

A triphenylamine (TPA)-based 2H-quinazoline Zn(II) complex (Q-TPA-Zn) exhibiting dual fluorescence and phosphorescence emission in the solid state was designed and prepared. It possesses mechanochromic luminescence and thermochromic luminescence properties. In the solid state, the white afterglow luminescence could be observed at 77 K (CIExy: 0.27, 0.33) while cyan luminescence could be observed at 297 K. After thermolysis at 300 °C, Q-TPA-Zn could be transformed into Schiff base complex S-TPA-Zn with white fluorescence in the powder state (CIExy: 0.32, 0.38), in methanol (CIExy: 0.32, 0.39), and in dimethylformamide (CIExy: 0.26, 0.32) at room temperature. This arises from dual emission of normal* emission and tautomeric* emission induced by excited-state intramolecular proton transfer (ESIPT) from the benzimidazole NH group to the Schiff base N atom. Q-TPA-Zn could also be transformed into its isomeric form, S-TPA-Zn, through photochemical ring-opening reaction upon irradiation under 365 nm in the solution, exhibiting high-contrast photochromic luminescence. Interestingly, S-TPA-Zn could further be transformed into its zwitterionic isomer after continuous irradiation. The same ring-opening reaction could also take place for the orgainc compound Q-TPA via heating or 365 nm irradiation. The ring-opening reaction mechanism and ESIPT emission were interpreted via theoretical calculation.

14.
Inorg Chem ; 60(17): 13500-13509, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34403261

ABSTRACT

It is necessary to develop stable and fast multistimuli responsive materials due to the growing demand in our daily life. In this work, a new viologen-based Cd-complex (1) exhibits multiple thermochromic and photochromic behaviors through 10 states with 7 colors. For example, it responds to both Cu Kα/Mo Kα X-ray sources and UV dual light quickly with a color change from colorless to dark blue (1X) (Cu Kα/Mo Kα X-ray sources) and cyan (1-UV) (UV light), respectively. Interestingly, it exhibits a three-step coloration phenomenon when heated, which is unprecedented in viologen compounds. Crystal 1 undergoes a color change to pink, blue, and brown under 130, 180, and 240 °C, respectively. In addition, upon fumigation, both 1P and 1Q undergo a decoloration process to colorless (1K) and yellow (1T), respectively. Four more states (1P, 1K, 1T, and 1O) obtained via dehydration-hydration treatment are all photochromic. More importantly, via single-crystal-single-crystal transformation (SC-SC), the photochromic and thermochromic behaviors of 1 were investigated from the molecular level, which is also rather rare for thermochromic species. The detailed electron donor and the pathways for electron transfer were clearly given according to the results of crystal structure. The colorful states upon external stimuli may be attributed to the multiple pathways for electron transfer.

15.
Inorg Chem ; 60(15): 11609-11615, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34284589

ABSTRACT

The development of smart luminescent materials, especially those stimulus-responsive fluorescent materials that can switch between different colors repeatedly under external stimulation based on a single molecule, is of great significance but a challenge. In this work, a novel zinc(II)-Schiff base complex (ZnL2) was obtained and characterized. Upon exposure to the HCl and NH3 vapors, it displayed remarkable tricolor acidochromic behavior with high contrast and rapid response under the ambient light as well as UV light (365 nm). The XPS analyses of ZnL2 crystals before and after HCl/NH3 fuming show that the acidochromism originates principally from the adsorption of vapor and the gas-solid reaction equilibrium on the crystal surface. The reddish-brown color of the HCl-fumigated ZnL2 crystals could be attributed to the generation of HL at the surface of ZnL2, and red-shifted emission could be ascribed to the self-absorption effect. The single crystal X-ray diffraction data indicate that these processes cause slight changes in the molecular conformation and crystal packing. ZnL2 shows reversible mechanochromic luminescence behavior between yellow and orange emission during the grinding-fuming/heating cycles due to the modulation between amorphous and crystalline states. Moreover, ZnL2 was successfully made into test paper for the rapid detection of HCl/NH3 vapors and mechanical stimuli.

16.
Dalton Trans ; 50(11): 3916-3922, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33635301

ABSTRACT

Three AIE (aggregation-induced emission)-ESIPT (excited-state intramolecular proton transfer) active 2-(2-hydroxyphenyl)benzothiazole derivatives, HL1, HL2 and HL3 with one, two and three rotatable phenyl groups, were obtained and characterized. Their AIE properties in THF/HEPES solution were investigated in detail. HL2 shows the best AIE performance with 71-fold fluorescence enhancement, while HL3 only shows a 9-fold enhancement. With the AIE property, HL1 and HL2 could act as fluorescence chemosensors to detect Cu2+ ions via the "turn off" mode in THF/HEPES media. With the ESIPT property, HL1 and HL2 could also detect Zn2+ ions via the "turn on" mode in EtOH/HEPES media. During the detection process, both demonstrate rapid response and high contrast before and after the addition of metal ions. The species formed in the detection system were investigated. The results of X-ray single-crystal diffraction confirm that Zn2+ is coordinated with the oxygen atom and Schiff base nitrogen atom instead of the benzothiazole nitrogen atom in the tetrahedron geometry. Moreover, the chemosensors were successfully constructed into handy fluorescence test papers for Cu2+ and Zn2+ detection.

17.
Dalton Trans ; 50(4): 1507-1513, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33443271

ABSTRACT

A multi-binding site chemosensor, N-(3-methoxy-2-hydroxybenzylidene)-3-hydroxy-2-naphthahydrazone (H3L), with excited-state intramolecular proton transfer (ESIPT) behaviour was prepared and characterized. It possesses no aggregation-induced emission (AIE) characteristics but can detect Cd2+ and Zn2+ ions selectively in the "off-on" mode based on the AIE of their complexes in the media of THF/HEPES and THF/H2O, respectively, which will provide a new strategy for target detection based on AIE. The detection limits of Zn2+ and Cd2+ were 9.85 × 10-9 M and 1.27 × 10-7 M, respectively. The aggregates of the complexes formed in the detection system were confirmed by DLS data and SEM images. The corresponding Zn2+ (1) and Cd2+ (2) complexes were prepared to investigate the response mechanism. Powder X-ray diffraction and single crystal X-ray diffraction proved that complex 1 is the species formed in the detection system. The chemosensor coordinates with the Cd2+ and Zn2+ ions in different formation and coordination modes, leading to the emission position of the aggregates at 560 and 645 nm, respectively, based on which Cd2+ ions were successfully differentiated from Zn2+ ions. Moreover, the detection of Cd2+ and Zn2+ ions was realized qualitatively via test paper and quantitatively in water.

18.
Inorg Chem ; 58(7): 4626-4633, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30869518

ABSTRACT

We first report single crystal X-ray analysis of ground crystals of mechanochromic luminescence (MCL) that shows single crystal-to-single crystal transformation (SCSCT). Single crystals of [ZnL2] (1-SG, HL = 2-[[[4-(2-benzoxazolyl)phenyl]imino]-methyl]-5-(diethylamino)-phenol) were obtained upon slight grinding of single crystals of [ZnL2]·0.5CH3OH (1), both of which were characterized by single crystal X-ray diffraction. Crystals of 1 showed emission centered at 647 nm (red color), while crystals of 1-SG showed emission band at 624 nm (orange-red color) under UV light, indicating MCL property of the Zn(II) complex. Reversible MCL property with emission color change between red and yellow for 1 was observed upon high grinding and recrystallization. Single crystal X-ray analysis suggested that it is due to the alteration of molecular conformation of ligands in ZnL2 instead of weak intermolecular interaction that 1 exhibits MCL. Investigation of the control Zn(II) complexes (2-4) indicated that flexible substituents and rotated aromatic rings are desirable to generate the MCL-active complexes. In addition, 1 was highly fluorescent in THF solution, but its fluorescence quenched upon addition of water. DFT calculations suggested that this is due to the formation of the excited hydrated ZnL2 species via Zn-O coordination bond, which results in electron-driven proton transfer (EDPT). Aggregates formed as water fraction ( fw) in THF/H2O (v/v) reached 70%, and fluorescence emission was enhanced. This phenomenon continued until fw was 90%, indicating aggregation-induced emission (AIE) property. The mechanism of AIE of ZnL2 in THF/H2O is the restriction of intramolecular rotation (RIR).

SELECTION OF CITATIONS
SEARCH DETAIL
...