Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
MMWR Morb Mortal Wkly Rep ; 73(16): 372-376, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662678

ABSTRACT

HIV transmitted through cosmetic injection services via contaminated blood has not been previously documented. During summer 2018, the New Mexico Department of Health (NMDOH) was notified of a diagnosis of HIV infection in a woman with no known HIV risk factors who reported exposure to needles from cosmetic platelet-rich plasma microneedling facials (vampire facials) received at a spa in spring 2018. An investigation of the spa's services began in summer 2018, and NMDOH and CDC identified four former spa clients, and one sexual partner of a spa client, all of whom received HIV infection diagnoses during 2018-2023, despite low reported behavioral risks associated with HIV acquisition. Nucleotide sequence analysis revealed highly similar HIV strains among all cases. Although transmission of HIV via unsterile injection practices is a known risk, determining novel routes of HIV transmission among persons with no known HIV risk factors is important. This investigation identified an HIV cluster associated with receipt of cosmetic injection services at an unlicensed facility that did not follow recommended infection control procedures or maintain client records. Requiring adequate infection control practices and maintenance of client records at spa facilities offering cosmetic injection services can help prevent the transmission of HIV and other bloodborne pathogens and ensure adequate traceback and notification in the event of adverse clinical outcomes, respectively.


Subject(s)
HIV Infections , Platelet-Rich Plasma , Adult , Female , Humans , Male , Middle Aged , Cosmetic Techniques , Face , HIV Infections/transmission , HIV Infections/epidemiology , Needles , New Mexico/epidemiology
2.
Virus Evol ; 10(1): veae015, 2024.
Article in English | MEDLINE | ID: mdl-38510920

ABSTRACT

We investigated transmission dynamics of a large human immunodeficiency virus (HIV) outbreak among persons who inject drugs (PWID) in KY and OH during 2017-20 by using detailed phylogenetic, network, recombination, and cluster dating analyses. Using polymerase (pol) sequences from 193 people associated with the investigation, we document high HIV-1 diversity, including Subtype B (44.6 per cent); numerous circulating recombinant forms (CRFs) including CRF02_AG (2.5 per cent) and CRF02_AG-like (21.8 per cent); and many unique recombinant forms composed of CRFs with major subtypes and sub-subtypes [CRF02_AG/B (24.3 per cent), B/CRF02_AG/B (0.5 per cent), and A6/D/B (6.4 per cent)]. Cluster analysis of sequences using a 1.5 per cent genetic distance identified thirteen clusters, including a seventy-five-member cluster composed of CRF02_AG-like and CRF02_AG/B, an eighteen-member CRF02_AG/B cluster, Subtype B clusters of sizes ranging from two to twenty-three, and a nine-member A6/D and A6/D/B cluster. Recombination and phylogenetic analyses identified CRF02_AG/B variants with ten unique breakpoints likely originating from Subtype B and CRF02_AG-like viruses in the largest clusters. The addition of contact tracing results from OH to the genetic networks identified linkage between persons with Subtype B, CRF02_AG, and CRF02_AG/B sequences in the clusters supporting de novo recombinant generation. Superinfection prevalence was 13.3 per cent (8/60) in persons with multiple specimens and included infection with B and CRF02_AG; B and CRF02_AG/B; or B and A6/D/B. In addition to the presence of multiple, distinct molecular clusters associated with this outbreak, cluster dating inferred transmission associated with the largest molecular cluster occurred as early as 2006, with high transmission rates during 2017-8 in certain other molecular clusters. This outbreak among PWID in KY and OH was likely driven by rapid transmission of multiple HIV-1 variants including de novo viral recombinants from circulating viruses within the community. Our findings documenting the high HIV-1 transmission rate and clustering through partner services and molecular clusters emphasize the importance of leveraging multiple different data sources and analyses, including those from disease intervention specialist investigations, to better understand outbreak dynamics and interrupt HIV spread.

4.
PLoS Negl Trop Dis ; 15(1): e0008923, 2021 01.
Article in English | MEDLINE | ID: mdl-33507996

ABSTRACT

The Democratic Republic of the Congo (DRC) has a history of nonhuman primate (NHP) consumption and exposure to simian retroviruses yet little is known about the extent of zoonotic simian retroviral infections in DRC. We examined the prevalence of human T-lymphotropic viruses (HTLV), a retrovirus group of simian origin, in a large population of persons with frequent NHP exposures and a history of simian foamy virus infection. We screened plasma from 3,051 persons living in rural villages in central DRC using HTLV EIA and western blot (WB). PCR amplification of HTLV tax and LTR sequences from buffy coat DNA was used to confirm infection and to measure proviral loads (pVLs). We used phylogenetic analyses of LTR sequences to infer evolutionary histories and potential transmission clusters. Questionnaire data was analyzed in conjunction with serological and molecular data. A relatively high proportion of the study population (5.4%, n = 165) were WB seropositive: 128 HTLV-1-like, 3 HTLV-2-like, and 34 HTLV-positive but untypeable profiles. 85 persons had HTLV indeterminate WB profiles. HTLV seroreactivity was higher in females, wives, heads of households, and increased with age. HTLV-1 LTR sequences from 109 persons clustered strongly with HTLV-1 and STLV-1 subtype B from humans and simians from DRC, with most sequences more closely related to STLV-1 from Allenopithecus nigroviridis (Allen's swamp monkey). While 18 potential transmission clusters were identified, most were in different households, villages, and health zones. Three HTLV-1-infected persons were co-infected with simian foamy virus. The mean and median percentage of HTLV-1 pVLs were 5.72% and 1.53%, respectively, but were not associated with age, NHP exposure, village, or gender. We document high HTLV prevalence in DRC likely originating from STLV-1. We demonstrate regional spread of HTLV-1 in DRC with pVLs reported to be associated with HTLV disease, supporting local and national public health measures to prevent spread and morbidity.


Subject(s)
HTLV-I Infections/transmission , HTLV-I Infections/virology , Human T-lymphotropic virus 1/classification , Human T-lymphotropic virus 1/physiology , Primates/virology , Adolescent , Animals , Animals, Wild/virology , Child , Democratic Republic of the Congo , Family Characteristics , Female , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 2 , Humans , Monkey Diseases/transmission , Phylogeny , Proviruses , Public Health , Retroviridae Infections/transmission , Simian T-lymphotropic virus 1 , Surveys and Questionnaires , Viral Load , Zoonoses/transmission
5.
Retrovirology ; 17(1): 34, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33008414

ABSTRACT

BACKGROUND: Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. RESULTS: All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. CONCLUSIONS: Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.


Subject(s)
Gammaretrovirus/genetics , Phascolarctidae/virology , Retroviridae Infections/veterinary , Tumor Virus Infections/veterinary , Animals , Animals, Wild , Animals, Zoo , Australia/epidemiology , Female , Gammaretrovirus/classification , Gammaretrovirus/isolation & purification , Gammaretrovirus/pathogenicity , Genetic Variation , Male , Molecular Epidemiology , Polymerase Chain Reaction/veterinary , Prevalence , RNA, Viral/genetics , Retroviridae Infections/epidemiology , Retroviridae Infections/transmission , Retroviridae Infections/virology , Tumor Virus Infections/epidemiology , Tumor Virus Infections/transmission , Tumor Virus Infections/virology , United States/epidemiology , Viral Load
6.
Genome Biol Evol ; 11(6): 1630-1643, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31106820

ABSTRACT

Over 40 species of nonhuman primates host simian immunodeficiency viruses (SIVs). In natural hosts, infection is generally assumed to be nonpathogenic due to a long coevolutionary history between host and virus, although pathogenicity is difficult to study in wild nonhuman primates. We used whole-blood RNA-seq and SIV prevalence from 29 wild Ugandan red colobus (Piliocolobus tephrosceles) to assess the effects of SIV infection on host gene expression in wild, naturally SIV-infected primates. We found no evidence for chronic immune activation in infected individuals, suggesting that SIV is not immunocompromising in this species, in contrast to human immunodeficiency virus in humans. Notably, an immunosuppressive gene, CD101, was upregulated in infected individuals. This gene has not been previously described in the context of nonpathogenic SIV infection. This expands the known variation associated with SIV infection in natural hosts and may suggest a novel mechanism for tolerance of SIV infection in the Ugandan red colobus.


Subject(s)
Primates/classification , Primates/genetics , Primates/virology , Animals , Female , Gene Expression Profiling , Genome-Wide Association Study , Male , Primates/immunology , Sex Factors , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus , Up-Regulation , Viral Load
7.
PLoS One ; 12(9): e0184251, 2017.
Article in English | MEDLINE | ID: mdl-28863180

ABSTRACT

Simian foamy viruses (SFVs) co-evolved with a wide range of Old World and New World primates (OWPs and NWPs, respectively) and occasionally transmit to humans. Previous studies of OWPs showed that the predominant site of SFV replication is the oral mucosa. However, very little is known about SFV viral loads (VLs) in the oral mucosa or blood of NWPs. NWPs have smaller body sizes, limiting collection of sufficient whole blood volumes to molecularly detect and quantify SFV. Our study evaluated the use of noninvasively collected buccal swabs to detect NWP SFV compared with detection in blood using a new NWP SFV quantitative PCR (qPCR) assay. Buccal and blood samples were collected from 107 captive NWPs in Brazil comprising eleven distinct genera at the Primate Center of Rio de Janeiro (n = 58) and at Fundação Jardim Zoológico da Cidade do Rio Janeiro (n = 49). NWP SFV western blot (WB) testing was performed on a subset of animals for comparison with PCR results. The qPCR assay was validated using distinct SFV polymerase sequences from seven NWP genera (Callithrix, Sapajus, Saimiri, Ateles, Alouatta, Cacajao and Pithecia). Assay sensitivity was 20 copies/106 cells, detectable in 90% of replicates. SFV DNA VLs were higher in buccal swabs (5 log copies/106 cells) compared to peripheral blood mononuclear cells (PBMCs) (3 log copies/106 cells). The qPCR assay was also more sensitive than nested PCR for detection of NWP SFV infection and identified an additional 27 SFV-infected monkeys of which 18 (90%) were WB-positive and three that were WB-negative. We show the utility of using both blood and buccal swabs and our new qPCR assay for detection and quantification of diverse NWP SFV, which will assist a better understanding of the epidemiology of SFV in NWPs and any potential zoonotic infection risk for humans exposed to NWPs.


Subject(s)
Leukocytes, Mononuclear/virology , Primates/virology , Retroviridae Infections/diagnosis , Simian foamy virus/genetics , Specimen Handling/methods , Animals , Brazil , DNA, Viral/genetics , Humans , Monkey Diseases/diagnosis , Monkey Diseases/virology , Mouth Mucosa/virology , Phylogeny , Plasmids/metabolism , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Retroviridae Infections/veterinary , Sensitivity and Specificity , Species Specificity , Viral Tropism , Zoonoses/virology
8.
PLoS One ; 12(9): e0184502, 2017.
Article in English | MEDLINE | ID: mdl-28931021

ABSTRACT

Simian foamy viruses (SFVs) are retroviruses present in nearly all nonhuman primates (NHPs), including Old World primates (OWP) and New World primates (NWP). While all confirmed human infections with SFV are from zoonotic transmissions originating from OWP, little is known about the zoonotic transmission potential of NWP SFV. We conducted a longitudinal, prospective study of 56 workers occupationally exposed to NWP in Brazil. Plasma from these workers was tested using Western blot (WB) assays containing NWP SFV antigens. Genomic DNA from blood and buccal swabs was analyzed for the presence of proviral SFV sequences by three nested PCR tests and a new quantitative PCR assay. Exposure histories were obtained and analyzed for associations with possible SFV infection. Ten persons (18%) tested seropositive and two persons were seroindeterminate (3.6%) for NWP SFV. Six persons had seroreactivity over 2-3 years suggestive of persistent infection. All SFV NWP WB-positive workers reported at least one incident involving NWP, including six reporting NWP bites. NWP SFV viral DNA was not detected in the blood or buccal swabs from all 12 NWP SFV seroreactive workers. We also found evidence of SFV seroreversion in three workers suggestive of possible clearance of infection. Our findings suggest that NWP SFV can be transmitted to occupationally-exposed humans and can elicit specific humoral immune responses but infection remains well-controlled resulting in latent infection and may occasionally clear.


Subject(s)
Retroviridae Infections/diagnosis , Simian foamy virus/genetics , Zoonoses/diagnosis , Adult , Animals , Antigens, Viral/immunology , Antigens, Viral/metabolism , Brazil , DNA, Viral/blood , DNA, Viral/metabolism , Female , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/virology , Longitudinal Studies , Male , Middle Aged , Mouth Mucosa/virology , Polymerase Chain Reaction , Primates , Prospective Studies , Retroviridae Infections/transmission , Retroviridae Infections/virology , Risk , Simian foamy virus/isolation & purification , Zoonoses/virology
9.
PLoS One ; 11(6): e0157709, 2016.
Article in English | MEDLINE | ID: mdl-27310836

ABSTRACT

Zoonotic transmission of simian retroviruses in West-Central Africa occurring in primate hunters has resulted in pandemic spread of human immunodeficiency viruses (HIVs) and human T-lymphotropic viruses (HTLVs). While simian foamy virus (SFV) and simian T- lymphotropic virus (STLV)-like infection were reported in healthy persons exposed to nonhuman primates (NHPs) in West-Central Africa, less is known about the distribution of these viruses in Western Africa and in hospitalized populations. We serologically screened for SFV and STLV infection using 1,529 specimens collected between 1985 and 1997 from Côte d'Ivoire patients with high HIV prevalence. PCR amplification and analysis of SFV, STLV, and HIV/SIV sequences from PBMCs was used to investigate possible simian origin of infection. We confirmed SFV antibodies in three persons (0.2%), two of whom were HIV-1-infected. SFV polymerase (pol) and LTR sequences were detected in PBMC DNA available for one HIV-infected person. Phylogenetic comparisons with new SFV sequences from African guenons showed infection likely originated from a Chlorocebus sabaeus monkey endemic to Côte d'Ivoire. 4.6% of persons were HTLV seropositive and PCR testing of PBMCs from 15 HTLV seroreactive persons identified nine with HTLV-1 and one with HTLV-2 LTR sequences. Phylogenetic analysis showed that two persons had STLV-1-like infections, seven were HTLV-1, and one was an HTLV-2 infection. 310/858 (53%), 8/858 (0.93%), and 18/858 (2.1%) were HIV-1, HIV-2, and HIV-positive but undifferentiated by serology, respectively. No SIV sequences were found in persons with HIV-2 antibodies (n = 1) or with undifferentiated HIV results (n = 7). We document SFV, STLV-1-like, and dual SFV/HIV infection in Côte d'Ivoire expanding the geographic range for zoonotic simian retrovirus transmission to West Africa. These findings highlight the need to define the public health consequences of these infections. Studying dual HIV-1/SFV infections in immunocompromised populations may provide a new opportunity to better understand SFV pathogenicity and transmissibility in humans.


Subject(s)
Deltaretrovirus Infections/diagnosis , HIV Infections/diagnosis , HIV-1/isolation & purification , Retroviridae Infections/diagnosis , Simian foamy virus/isolation & purification , Animals , Antibodies, Viral/blood , Chlorocebus aethiops , Coinfection , Cote d'Ivoire/epidemiology , DNA, Viral/genetics , Deltaretrovirus Infections/epidemiology , Deltaretrovirus Infections/virology , HIV Infections/epidemiology , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , HIV-2/classification , HIV-2/genetics , HIV-2/isolation & purification , Human T-lymphotropic virus 1/classification , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/isolation & purification , Human T-lymphotropic virus 2/classification , Human T-lymphotropic virus 2/genetics , Human T-lymphotropic virus 2/isolation & purification , Humans , Leukocytes, Mononuclear/virology , Monkey Diseases/diagnosis , Monkey Diseases/epidemiology , Monkey Diseases/virology , Phylogeny , Retroviridae Infections/epidemiology , Retroviridae Infections/virology , Simian foamy virus/classification , Simian foamy virus/genetics
10.
Retrovirology ; 11: 55, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24996566

ABSTRACT

BACKGROUND: Human immunodeficiency virus (HIV) type 1 and 2, the causative agents of acquired immunodeficiency syndrome (AIDS), emerged from African non-human primates (NHPs) through zoonotic transmission of simian immunodeficiency viruses (SIV). Among African NHPs, the Cercopithecus genus contains the largest number of species known to harbor SIV. However, our understanding of the diversity and evolution of SIVs infecting this genus is limited by incomplete taxonomic and geographic sampling, particularly in East Africa. In this study, we screened blood specimens from red-tailed guenons (Cercopithecus ascanius schmidti) from Kibale National Park, Uganda, for the presence of novel SIVs using unbiased deep-sequencing. FINDINGS: We describe and characterize the first full-length SIV genomes from wild red-tailed guenons in Kibale National Park, Uganda. This new virus, tentatively named SIVrtg_Kib, was detected in five out of twelve animals and is highly divergent from other Cercopithecus SIVs as well as from previously identified SIVs infecting red-tailed guenons, thus forming a new SIV lineage. CONCLUSIONS: Our results show that the genetic diversity of SIVs infecting red-tailed guenons is greater than previously appreciated. This diversity could be the result of cross-species transmission between different guenon species or limited gene flow due to geographic separation among guenon populations.


Subject(s)
Cercopithecus/virology , Genome, Viral , Simian Immunodeficiency Virus/genetics , Animals , Simian Immunodeficiency Virus/classification , Uganda
11.
Emerg Microbes Infect ; 3(1): e7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-26038495

ABSTRACT

Of the seven known species of human retroviruses only one, human T-cell lymphotropic virus type 4 (HTLV-4), lacks a known animal reservoir. We report the largest screening for simian T-cell lymphotropic virus (STLV-4) to date in a wide range of captive and wild non-human primate (NHP) species from Cameroon. Among the 681 wild and 426 captive NHPs examined, we detected STLV-4 infection only among gorillas by using HTLV-4-specific quantitative polymerase chain reaction. The large number of samples analyzed, the diversity of NHP species examined, the geographic distribution of infected animals relative to the known HTLV-4 case, as well as detailed phylogenetic analyses on partial and full genomes, indicate that STLV-4 is endemic to gorillas, and that rather than being an ancient virus among humans, HTLV-4 emerged from a gorilla reservoir, likely through the hunting and butchering of wild gorillas. Our findings shed further light on the importance of gorillas as keystone reservoirs for the evolution and emergence of human infectious diseases and provide a clear course for preventing HTLV-4 emergence through management of human contact with wild gorillas, the development of improved assays for HTLV-4/STLV-4 detection and the ongoing monitoring of STLV-4 among gorillas and for HTLV-4 zoonosis among individuals exposed to gorilla populations.

12.
Proc Natl Acad Sci U S A ; 110(28): 11547-52, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23798387

ABSTRACT

Leukemia and lymphoma account for more than 60% of deaths in captive koalas (Phascolarctos cinereus) in northeastern Australia. Although the endogenizing gammaretrovirus koala endogenous retrovirus (KoRV) was isolated from these koalas, KoRV has not been definitively associated with leukemogenesis. We performed KoRV screening in koalas from the San Diego Zoo, maintained for more than 45 y with very limited outbreeding, and the Los Angeles Zoo, maintained by continuously assimilating captive-born Australian koalas. San Diego Zoo koalas are currently free of malignant neoplasias and were infected with only endogenous KoRV, which we now term subtype "KoRV-A," whereas Los Angeles Zoo koalas with lymphomas/leukemias are infected in addition to KoRV-A by a unique KoRV we term subtype "KoRV-B." KoRV-B is most divergent in the envelope protein and uses a host receptor distinct from KoRV-A. KoRV-B also has duplicated enhancer regions in the LTR associated with increased pathology in gammaretroviruses. Whereas KoRV-A uses the sodium-dependent phosphate transporter 1 (PiT1) as a receptor, KoRV-B employs a different receptor, the thiamine transporter 1 (THTR1), to infect cells. KoRV-B is transmitted from dam to offspring through de novo infection, rather than via genetic inheritance like KoRV-A. Detection of KoRV-B in native Australian koalas should provide a history, and a mode for remediation, of leukemia/lymphoma currently endemic in this population.


Subject(s)
Animals, Zoo , Neoplasms/virology , Retroviridae/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , Cell Line , DNA, Viral , Humans , Marsupialia , Molecular Sequence Data , Polymerase Chain Reaction , Retroviridae/genetics , Retroviridae/pathogenicity , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , United States
13.
Retrovirology ; 9: 100, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23217108

ABSTRACT

BACKGROUND: Zoonotic transmission of simian retroviruses in Central Africa is ongoing and can result in pandemic human infection. While simian foamy virus (SFV) infection was reported in primate hunters in Cameroon and Gabon, little is known about the distribution of SFV in Africa and whether human-to-human transmission and disease occur. We screened 3,334 plasmas from persons living in rural villages in central Democratic Republic of Congo (DRC) using SFV-specific EIA and Western blot (WB) tests. PCR amplification of SFV polymerase sequences from DNA extracted from buffy coats was used to measure proviral loads. Phylogenetic analysis was used to define the NHP species origin of SFV. Participants completed questionnaires to capture NHP exposure information. RESULTS: Sixteen (0.5%) samples were WB-positive; 12 of 16 were from women (75%, 95% confidence limits 47.6%, 92.7%). Sequence analysis detected SFV in three women originating from Angolan colobus or red-tailed monkeys; both monkeys are hunted frequently in DRC. NHP exposure varied and infected women lived in distant villages suggesting a wide and potentially diverse distribution of SFV infections across DRC. Plasmas from 22 contacts of 8 WB-positive participants were all WB negative suggesting no secondary viral transmission. Proviral loads in the three women ranged from 14 - 1,755 copies/105 cells. CONCLUSIONS: Our study documents SFV infection in rural DRC for the first time and identifies infections with novel SFV variants from Colobus and red-tailed monkeys. Unlike previous studies, women were not at lower risk for SFV infection in our population, providing opportunities for spread of SFV both horizontally and vertically. However, limited testing of close contacts of WB-positive persons did not identify human-to-human transmission. Combined with the broad behavioral risk and distribution of NHPs across DRC, our results suggest that SFV infection may have a wider geographic distribution within DRC. These results also reinforce the potential for an increased SFV prevalence throughout the forested regions of Africa where humans and simians co-exist. Our finding of endemic foci of SFV infection in DRC will facilitate longitudinal studies to determine the potential for person-to-person transmissibility and pathogenicity of these zoonotic retroviral infections.


Subject(s)
Monkey Diseases/transmission , Retroviridae Infections/transmission , Simian foamy virus/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Colobus , Congo , Female , Humans , Infant , Middle Aged , Phylogeny , Simian foamy virus/classification , Simian foamy virus/genetics , Viral Load , Zoonoses/transmission
14.
mBio ; 3(5)2012.
Article in English | MEDLINE | ID: mdl-22991430

ABSTRACT

The disabling disorder known as chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME) has been linked in two independent studies to infection with xenotropic murine leukemia virus-related virus (XMRV) and polytropic murine leukemia virus (pMLV). Although the associations were not confirmed in subsequent studies by other investigators, patients continue to question the consensus of the scientific community in rejecting the validity of the association. Here we report blinded analysis of peripheral blood from a rigorously characterized, geographically diverse population of 147 patients with CFS/ME and 146 healthy subjects by the investigators describing the original association. This analysis reveals no evidence of either XMRV or pMLV infection. IMPORTANCE Chronic fatigue syndrome/myalgic encephalomyelitis has an estimated prevalence of 42/10,000 in the United States, with annual direct medical costs of $7 billion. Here, the original investigators who found XMRV and pMLV (polytropic murine leukemia virus) in blood of subjects with this disorder report that this association is not confirmed in a blinded analysis of samples from rigorously characterized subjects. The increasing frequency with which molecular methods are used for pathogen discovery poses new challenges to public health and support of science. It is imperative that strategies be developed to rapidly and coherently address discoveries so that they can be carried forward for translation to clinical medicine or abandoned to focus resource investment more productively. Our study provides a paradigm for pathogen dediscovery that may be helpful to others working in this field.


Subject(s)
Fatigue Syndrome, Chronic/etiology , Fatigue Syndrome, Chronic/virology , Leukemia Virus, Murine/isolation & purification , Xenotropic murine leukemia virus-related virus/isolation & purification , Xenotropic murine leukemia virus-related virus/pathogenicity , Adult , Aged , Female , Humans , Male , Middle Aged , Single-Blind Method , United States , Young Adult
15.
PLoS One ; 6(12): e29050, 2011.
Article in English | MEDLINE | ID: mdl-22205995

ABSTRACT

The xenotropic murine leukemia virus (MLV)-related viruses (XMRV) have been reported in persons with prostate cancer, chronic fatigue syndrome, and less frequently in blood donors. Polytropic MLVs have also been described in persons with CFS and blood donors. However, many studies have failed to confirm these findings, raising the possibility of contamination as a source of the positive results. One PCR reagent, Platinum Taq polymerase (pol) has been reported to contain mouse DNA that produces false-positive MLV PCR results. We report here the finding of a large number of PCR reagents that have low levels of MLV sequences. We found that recombinant reverse-transcriptase (RT) enzymes from six companies derived from either MLV or avian myeloblastosis virus contained MLV pol DNA sequences but not gag or mouse DNA sequences. Sequence and phylogenetic analysis showed high relatedness to Moloney MLV, suggesting residual contamination with an RT-containing plasmid. In addition, we identified contamination with mouse DNA and a variety of MLV sequences in commercially available human DNAs from leukocytes, brain tissues, and cell lines. These results identify new sources of MLV contamination and highlight the importance of careful pre-screening of commercial specimens and diagnostic reagents to avoid false-positive MLV PCR results.


Subject(s)
DNA Contamination , DNA, Viral/analysis , Leukemia Virus, Murine/genetics , RNA-Directed DNA Polymerase , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Cell Line, Tumor , False Positive Reactions , Humans , Indicators and Reagents , Leukemia Virus, Murine/enzymology , Mice , Plasmids/genetics
16.
PLoS One ; 6(5): e19065, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21573232

ABSTRACT

BACKGROUND: The association of the xenotropic murine leukemia virus-related virus (XMRV) with prostate cancer continues to receive heightened attention as studies report discrepant XMRV prevalences ranging from zero up to 23%. It is unclear if differences in the diagnostic testing, disease severity, geography, or other factors account for the discordant results. We report here the prevalence of XMRV in a population with well-defined prostate cancers and RNase L polymorphism. We used broadly reactive PCR and Western blot (WB) assays to detect infection with XMRV and related murine leukemia viruses (MLV). METHODOLOGY/PRINCIPAL FINDINGS: We studied specimens from 162 US patients diagnosed with prostate cancer with a intermediate to advanced stage (Gleason Scores of 5-10; moderate (46%) poorly differentiated tumors (54%)). Prostate tissue DNA was tested by PCR assays that detect XMRV and MLV variants. To exclude contamination with mouse DNA, we also designed and used a mouse-specific DNA PCR test. Detailed phylogenetic analysis was used to infer evolutionary relationships. RNase L typing showed that 9.3% were homozygous (QQ) for the R462Q RNase L mutation, while 45.6% and 45.1% were homozygous or heterozygous, respectively. Serologic testing was performed by a WB test. Three of 162 (1.9%) prostate tissue DNA were PCR-positive for XMRV and had undetectable mouse DNA. None was homozygous for the QQ mutation. Plasma from all three persons was negative for viral RNA by RT-PCR. All 162 patients were WB negative. Phylogenetic analysis inferred a distinct XMRV. CONCLUSIONS AND THEIR SIGNIFICANCE: We found a very low prevalence of XMRV in prostate cancer patients. Infection was confirmed by phylogenetic analysis and absence of contaminating mouse DNA. The finding of undetectable antibodies and viremia in all three patients may reflect latent infection. Our results do not support an association of XMRV or MLV variants with prostate cancer.


Subject(s)
Prostatic Neoplasms/etiology , Prostatic Neoplasms/virology , Xenotropic murine leukemia virus-related virus/pathogenicity , Adult , Aged , Blotting, Western , DNA, Mitochondrial , Endoribonucleases/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Xenotropic murine leukemia virus-related virus/genetics
17.
Retrovirology ; 8: 12, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21342521

ABSTRACT

In 2009, a newly discovered human retrovirus, xenotropic murine leukemia virus (MuLV)-related virus (XMRV), was reported by Lombardi et al. in 67% of persons from the US with chronic fatigue syndrome (CFS) by PCR detection of gag sequences. Although six subsequent studies have been negative for XMRV, CFS was defined more broadly using only the CDC or Oxford criteria and samples from the US were limited in geographic diversity, both potentially reducing the chances of identifying XMRV positive CFS cases. A seventh study recently found polytropic MuLV sequences, but not XMRV, in a high proportion of persons with CFS. Here we tested blood specimens from 45 CFS cases and 42 persons without CFS from over 20 states in the United States for both XMRV and MuLV. The CFS patients all had a minimum of 6 months of post-exertional malaise and a high degree of disability, the same key symptoms described in the Lombardi et al. study. Using highly sensitive and generic DNA and RNA PCR tests, and a new Western blot assay employing purified whole XMRV as antigen, we found no evidence of XMRV or MuLV in all 45 CFS cases and in the 42 persons without CFS. Our findings, together with previous negative reports, do not suggest an association of XMRV or MuLV in the majority of CFS cases.


Subject(s)
Antibodies, Viral/blood , DNA, Viral/blood , Fatigue Syndrome, Chronic/virology , Retroviridae/immunology , Xenotropic murine leukemia virus-related virus/immunology , Adult , Blotting, Western , Fatigue Syndrome, Chronic/epidemiology , Female , Humans , Male , Polymerase Chain Reaction , Retroviridae/genetics , Retroviridae/isolation & purification , Retroviridae Infections/virology , Serology , United States/epidemiology , Xenotropic murine leukemia virus-related virus/genetics , Xenotropic murine leukemia virus-related virus/isolation & purification , Young Adult
18.
PLoS One ; 6(12): e29223, 2011.
Article in English | MEDLINE | ID: mdl-22216219

ABSTRACT

BACKGROUND: The association of xenotropic murine leukemia virus (MLV)-related virus (XMRV) in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents. RESULTS: All eight live attenuated vaccines, including Japanese encephalitis virus (JEV) (SA-14-14-2), varicella (Varivax), measles, mumps, and rubella (MMR-II), measles (Attenuvax), rubella (Meruvax-II), rotavirus (Rotateq and Rotarix), and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells. CONCLUSIONS: We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.


Subject(s)
Drug Contamination , Leukemia Virus, Murine/isolation & purification , Vaccines , Humans , Metagenomics , Molecular Sequence Data , Vaccines/adverse effects
19.
Retrovirology ; 7: 57, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20594299

ABSTRACT

BACKGROUND: XMRV, a xenotropic murine leukemia virus (MuLV)-related virus, was recently identified by PCR testing in 67% of persons with chronic fatigue syndrome (CFS) and in 3.7% of healthy persons from the United States. To investigate the association of XMRV with CFS we tested blood specimens from 51 persons with CFS and 56 healthy persons from the US for evidence of XMRV infection by using serologic and molecular assays. Blinded PCR and serologic testing were performed at the US Centers for Disease Control and Prevention (CDC) and at two additional laboratories. RESULTS: Archived blood specimens were tested from persons with CFS defined by the 1994 international research case definition and matched healthy controls from Wichita, Kansas and metropolitan, urban, and rural Georgia populations. Serologic testing at CDC utilized a Western blot (WB) assay that showed excellent sensitivity to MuLV and XMRV polyclonal or monoclonal antibodies, and no reactivity on sera from 121 US blood donors or 26 HTLV-and HIV-infected sera. Plasma from 51 CFS cases and plasma from 53 controls were all WB negative. Additional blinded screening of the 51 cases and 53 controls at the Robert Koch Institute using an ELISA employing recombinant Gag and Env XMRV proteins identified weak seroreactivity in one CFS case and a healthy control, which was not confirmed by immunofluorescence. PCR testing at CDC employed a gag and a pol nested PCR assay with a detection threshold of 10 copies in 1 ug of human DNA. DNA specimens from 50 CFS patients and 56 controls and 41 US blood donors were all PCR-negative. Blinded testing by a second nested gag PCR assay at the Blood Systems Research Institute was also negative for DNA specimens from the 50 CFS cases and 56 controls. CONCLUSIONS: We did not find any evidence of infection with XMRV in our U.S. study population of CFS patients or healthy controls by using multiple molecular and serologic assays. These data do not support an association of XMRV with CFS.


Subject(s)
Blood/virology , Fatigue Syndrome, Chronic/etiology , Fatigue Syndrome, Chronic/virology , Gammaretrovirus/isolation & purification , Adolescent , Adult , Antibodies, Viral/blood , Blotting, Western , Case-Control Studies , Child , DNA, Viral/blood , Enzyme-Linked Immunosorbent Assay , Female , Georgia , Humans , Kansas , Male , Middle Aged , Polymerase Chain Reaction , Sensitivity and Specificity , Young Adult
20.
Virology ; 401(2): 137-45, 2010 Jun 05.
Article in English | MEDLINE | ID: mdl-20353873

ABSTRACT

The recent discovery of human T-lymphotropic virus type 3 (HTLV-3) in Cameroon highlights the importance of expanded surveillance to better understand the prevalence and public health impact of this new retrovirus. HTLV diversity was investigated in 408 persons in rural Cameroon who reported simian exposures. Plasma from 29 persons (7.2%) had reactive serology. HTLV tax sequences were detected in 3 persons. Phylogenetic analysis confirmed HTLV-1 infection in two individuals and HTLV-3 infection in a third person (Cam2013AB). The complete proviral genome from Cam2013AB shared 98% identity and clustered tightly in distinct lineage with simian T-lymphotropic virus type 3 (STLV-3) subtype D recently identified in two guenon monkeys near this person's village. These results document a fourth HTLV-3 infection with a new and highly divergent strain we designate HTLV-3 (Cam2013AB) subtype D demonstrating the existence of a broad HTLV-3 diversity likely originating from multiple zoonotic transmissions of divergent STLV-3.


Subject(s)
Deltaretrovirus Infections/virology , Genetic Variation , Human T-lymphotropic virus 3/classification , Human T-lymphotropic virus 3/genetics , Adolescent , Adult , Animals , Cameroon , Cluster Analysis , Female , Gene Products, tax/genetics , Genome, Viral , Haplorhini/virology , Human T-lymphotropic virus 3/isolation & purification , Humans , Male , Middle Aged , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...