Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 657: 124146, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38657716

ABSTRACT

Host cell invasion with strong antibiotics evading is a major feature of respiratory Staphylococcus aureus infections with severe recurrence. Bacteriophage (phage) therapy and design of liposomal phage to target intracellular pathogens have been described recently. The practicality for pulmonary delivery of liposomal phage, and how formulation compositions affecting the aerosolization and intracellular bacterial killing remain unexplored. In the present study, three commonly used phospholipids (SPC, EPC, and HSPC) were selected to investigate their ability for phage K nebulization and intracellular therapy in the form of liposome-phage nanocomplexes. The three lipid nanocarriers showed protection on phage K upon mesh nebulization and the pulmonary deposition efficiency was influenced by the lipid used. Moreover, the intracellular bacterial killing was strongly depended on the lipid types, where EPC-phage exhibited the best killing performance with no relapsing. Phage K with the aid of EPC liposomes was also observed to manage the tissue infection in a 3D spheroid model more effectively than other groups. Altogether, this novel EPC liposome-phage nanocomplex can be a promising formulation approach that enables inhalable phage to manage respiratory infections caused by bacteria strongly associated with human epithelial cells.


Subject(s)
Coculture Techniques , Epithelial Cells , Liposomes , Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus aureus/virology , Humans , Epithelial Cells/virology , Phospholipids/chemistry , Bacteriophages , Staphylococcal Infections , Administration, Inhalation , Nanoparticles , Nebulizers and Vaporizers
2.
Food Res Int ; 173(Pt 1): 113307, 2023 11.
Article in English | MEDLINE | ID: mdl-37803616

ABSTRACT

Bacteriophages as promising natural antibacterial additives are widely used in food processing and storage. Although freeze-drying is an economical and efficient way to preserve phages, so far there is limited data for phage freeze-drying and key factors that inactivate phages during freeze-drying and storage remain unknown. Here we systemically compared different types of saccharides/polyols (dextran 5000, glucose, sucrose, trehalose, mannitol, and xylitol) as lyoprotectants and their potential ratios for phage freeze-drying. The pH and osmotic pressure tolerance of bacteriophages were determined and all lyoprotectant solutions were within the tolerance range of phages. Combined with thermodynamic data, it was found that only completely vitrified formulations (glucose, sucrose, and trehalose) could preserve phages during freeze-drying. Selected freeze-dried phages were further arranged for an accelerated stability study. Most formulations stored at higher temperatures (≥25 ℃) presented devitrification, resulting in a significant drop in phage titer. 10% (w/v) of sucrose was recommended as the best formulation for freeze-dried phage storage with less devitrification and a better fitting coefficient (R2 = 0.9592) to the Arrhenius equation, predictively reaching shelf-time as 1093.3 days at 4 ℃ storage. These findings implied that the devitrification of lyoprotectants was the critical determinant for bacteriophage inactivation both in freeze-drying and storage.


Subject(s)
Bacteriophages , Trehalose , Freeze Drying/methods , Sucrose , Glucose
3.
Sci Rep ; 13(1): 9534, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308748

ABSTRACT

Respiratory Staphylococcus aureus infection represents a common complication in lung cancer patients, which is characterized with progressively and recurrently intratumor invasion. Although bacteriophages are widely reported as an effective bioweapon for managing bacterial infections, its applicability in handling infectious complications during cancer chemotherapy remains unknown. In this work, we hypothesized cancer chemotherapeutics would influence the efficacy of bacteriophages. To verify this end, interactions between four anticancer drugs (Gemcitabine, Doxorubicin, Cisplatin, and Irinotecan) with phage K were investigated, where Cisplatin directly reduced phage titers while Gemcitabine and Doxorubicin partially inhibited its propagation. The antibacterial efficacy of drug-phage K combinations was tested in a S. aureus infected cancer cell model. Doxorubicin enhanced the antibacterial capacity of phage K, destroying 22-folds of cell-associated bacteria than that of phage K alone use. Also, S. aureus migration was remarkably reduced by Doxorubicin. Overall, our data suggested that Doxorubicin had synergistic effects with phage K in combating S. aureus intracellular infection and migration. This work may broaden the options of indication for phage clinical transformation and also provide reference for the adjunctive application of chemo drugs in intracellular infection management.


Subject(s)
Bacteriophages , Lung Neoplasms , Phage Therapy , Staphylococcal Infections , Humans , Staphylococcus aureus , Cisplatin , Doxorubicin , Anti-Bacterial Agents
4.
Pharm Res ; 40(5): 1057-1072, 2023 May.
Article in English | MEDLINE | ID: mdl-36123511

ABSTRACT

Bacterial infections in the respiratory tract are considered as one of the major challenges to the public health worldwide. Pulmonary delivery is an attractive approach in the management of bacterial respiratory infections with a few inhaled antibiotics approved. However, with the rapid emergence of antibiotic-resistant bacteria, it is necessary to develop new/alternative inhaled antibacterial agents in the post-antibiotic era. A pipeline of novel biological antibacterial agents, including antimicrobial peptides, RNAi therapeutics, and bacteriophages, has emerged to combat bacterial infections with excellent performance. In this review, the causal effects of bacterial infections on the related pulmonary infectious diseases will be firstly introduced. This is followed by an overview on the development of emerging antibacterial therapeutics for managing lung bacterial infections through nebulization/inhalation of dried powders. The obstacles and underlying proposals regarding their clinical transformation are also discussed to seek insights for further development. Research on inhaled therapy of these emerging antibacterials are still in the infancy, but the promising progress warrants further attention.


Subject(s)
Bacterial Infections , Respiratory Tract Infections , Humans , Bacterial Infections/drug therapy , Anti-Bacterial Agents , Bacteria , Lung , Respiratory Tract Infections/drug therapy
5.
Pharmaceutics ; 14(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35745796

ABSTRACT

The multi-inlet vortex mixer (MIVM) has emerged as a novel bottom-up technology for solid nanoparticle preparation. However, its performance in liposome preparation remains unknown. Here, two key process parameters (aqueous/organic flow rate ratio (FRR) and total flow rate (TFR)) of MIVM were investigated for liposome preparation. For this study, two model drugs (lysozyme and erythromycin) were chosen for liposome encapsulation as the representative hydrophilic and hydrophobic drugs, respectively. In addition, two modified MIVMs, one with herringbone-patterned straight inlets and one with zigzag inlets, were designed to further improve the mixing efficiency, aiming to achieve better drug encapsulation. Data showed that FRR played an important role in liposome size control, and a size of <200 nm was achieved by FRR higher than 3:1. Moreover, increasing TFR (from 1 to 100 mL/min) could further decrease the size at a given FRR. However, similar regularities in controlling the encapsulation efficiency (EE%) were only noted in erythromycin-loaded liposomes. Modified MIVMs improved the EE% of lysozyme-loaded liposomes by 2~3 times at TFR = 40 mL/min and FRR = 3:1, which was consistent with computational fluid dynamics simulations. In summary, the good performance of MIVM in the control of particle size and EE% makes it a promising tool for liposome preparation, especially for hydrophobic drug loading, at flexible production scales.

6.
Acta Biomater ; 123: 325-334, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33454386

ABSTRACT

Polyethylene glycol (PEG) modification is one of the promising approaches to overcome both mucus and alveolar macrophage uptake barriers in the deep lung for sustained therapy of pulmonary diseases such as asthma. To investigate the feasibility of using PEG-modified microspheres to bypass both barriers, we prepared a collection of polyethylene glycol-distearoyl glycero-phosphoethanolamine (PEG-DSPE)-modified poly (lactide-co-glycolide) (PLGA) microspheres bearing specific PEG molecular weights (0.75, 2, 5, and 10 kDa) and PEG-DSPE/PLGA molar ratios (0.25:1 and 1:1). Drug release, mucus penetration, and macrophage uptake were evaluated in vitro, and the corresponding in vivo activities of microspheres in rats were investigated. It was found that the PEG2000-DSPE/PLGA 1:1 group showed enhanced mucus permeability and reduced macrophage uptake in vitro compared to the PEG2000-DSPE/PLGA 0.25:1 group. At high PEG molar ratios, only the PEG 2000-based group showed significantly prolonged lung retention in vivo compared to the control group. The systemic exposure of the PEG2000-DSPE/PLGA 1:1 group was significantly lower than that of the PEG2000-DSPE/PLGA 0.25:1 group (39% of AUC reduction). Additionally, when using the same molar ratio of 1:1, the PEG 2000 group significantly lowered the systemic drug exposure compared to that of the PEG 5000 and 10000 groups (48% and 33% of AUC reduction, respectively), thus making it a promising sustained lung delivery candidate for pulmonary disease treatment.


Subject(s)
Nanoparticles , Animals , Drug Liberation , Lung , Microspheres , Polyethylene Glycols , Rats
7.
Eur J Pharm Biopharm ; 143: 70-79, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31446045

ABSTRACT

Controlled drug delivery to the lungs is promising with plentiful advantages over current rapid release products. However, alveolar macrophage clearance has severely hindered the application of inhaled controlled release preparations. The objective of our study was to explore the feasibility to decorate poly(lactide-co-glycolide) (PLGA) microparticles with endogenous phospholipids found in the deep lungs, thus, to regulate the interplay with alveolar macrophages. The influence of the phospholipid amount and type on macrophage uptake of PLGA microparticles was investigated systemically under both in vitro (RAW264.7 and NR8383) and in vivo conditions. The uptake rate (k) by macrophages, in vivo elimination rate from the bronchoalveolar lavage fluid (k') and elimination rate from the whole lung (k″) were used as parameters for evaluation. Our data showed that a modification with dipalmitoyl phosphatidylcholine (DPPC) enhanced the macrophage phagocytosis significantly over the unmodified counterparts. Thereafter, using the same modification ratio, remarkable enhancement of macrophage uptake was found in the presence of different types of other phospholipids, especially with distearoyl phosphatidylethanolamine (DSPE). When replaced by a poly(ethylene glycol)-conjugated version of DSPE the uptake of the modified PLGA microparticles was reduced by ~200%. Meanwhile, the drug content in the lung tissue was improved by 3-fold (area under the curve value). Finally, it was possible to establish a correlation between in vitro phagocytosis and in vivo lung elimination rate for the investigated formulations. Overall, our study demonstrated that phospholipids play an important role in modulating the clearance of microparticle-based drug delivery vehicles, which gives a meaningful insight into the development of prolonged drug release system for inhalation.


Subject(s)
Macrophages, Alveolar/metabolism , Phospholipids/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Administration, Inhalation , Animals , Cell Line , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Lung/metabolism , Mice , Phagocytosis/drug effects , Phosphatidylglycerols/chemistry , Polyethylene Glycols/chemistry , RAW 264.7 Cells
8.
Acta Biomater ; 96: 505-516, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31265921

ABSTRACT

Large porous particles (LPPs) are well-known vehicles for drug delivery to the lungs. However, it remains uncertain whether or to which extent the in vitro drug release behavior of LPPs can be predictive of their in vivo performance (e.g., systemic exposure and therapeutic efficacy). With regard to this, three budesonide-loaded LPP formulations with identical composition but distinct in vitro drug release profiles were studied in vivo for their pharmacokinetic and pharmacodynamic behavior after delivery to rat lung, and finally, an in vitro/in vivo correlation (IVIVC) was established. All formulations reduced approximately 75% of the uptake by RAW264.7 macrophages compared with budesonide/lactose physical mixture and showed a drug release-dependent retention behavior in the lungs of rats. Likewise, the highest budesonide plasma concentration was measured for the formulation revealing the fastest in vitro drug release. After deconvolution of the plasma concentration/time profiles, the calculated in vivo drug release data were successfully utilized for a point-to-point IVIVC with the in vitro release profiles and the predictability of the developed IVIVC was acceptable. Finally, effective therapy was observed in an allergic asthma rat model for the sustained drug release formulations. Overall, the obtained in vitro results correlate well with the systemic drug exposure and the therapeutic performance of the investigated lung-delivered formulations, which can provide an experimental basis for IVIVC development in the pulmonary-controlled delivery system. STATEMENT OF SIGNIFICANCE: Large porous particles (LPPs) are well-known vehicles for drug delivery to the lungs. However, it remains uncertain whether or to which extent the in vitro drug release behavior of LPPs can be predicted by their in vivo performance (e.g., systemic exposure and therapeutic efficacy). With regard to this, three budesonide-loaded PLGA-based LPP formulations with identical composition but distinct in vitro drug release profiles were studied in vivo for their pharmacokinetic and pharmacodynamic behavior, and finally, an in vitro/in vivo correlation (IVIVC) was established. It was demonstrated that the influence of the in vitro drug release profile was obvious during lung retention, systemic exposure, and therapeutic efficacy measurements. An IVIVC (Level A) was successfully established for the budesonide-loaded LPPs delivered to the airspace of rats for the first time. Taken together, the present work will clearly support research and development activities in the field of controlled drug delivery to the lungs.


Subject(s)
Asthma , Budesonide , Drug Delivery Systems , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Budesonide/chemistry , Budesonide/pharmacokinetics , Budesonide/pharmacology , Male , Mice , Porosity , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley
9.
Pharm Res ; 36(7): 97, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31076925

ABSTRACT

PURPOSE: The aim of this research was to design dexamethasone palmitate (DP) loaded sialic acid modified liposomes, with the eventual goal of using peripheral blood neutrophils (PBNs) that carried drug-loaded liposomes to improve the therapeutic capacity for rheumatoid arthritis (RA). METHODS: A sialic acid - cholesterol conjugate (SA-CH) was synthesized and anchored on the surface of liposomal dexamethasone palmitate (DP-SAL). The physicochemical characteristics and in vitro cytotoxicity of liposomes were evaluated. Flow cytometry and confocal laser scanning microscopy were utilized to investigate the accumulation of liposomes in PBNs. The adjuvant-induced arthritis was adopted to investigate the targeting ability and anti-inflammatory effect of DP loaded liposomes. RESULTS: Both DP-CL and DP-SAL existed an average size less than 200 nm with remarkably high encapsulation efficiencies more than 90%. In vitro and in vivo experiments manifested SA-modified liposomes provided a reinforced accumulation of DP in PBNs. As well, DP-SAL displayed a greater degree of accumulation in the joints and a stronger anti-inflammatory effect in terms of RA suppression. CONCLUSIONS: SA-modified liposomal DP was a promising candidate for RA-targeting treatment through the neutrophil-mediated drug delivery system.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Dexamethasone/pharmacokinetics , Liposomes/chemistry , N-Acetylneuraminic Acid/chemistry , Neutrophils/metabolism , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/toxicity , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Cholesterol/chemistry , Dexamethasone/administration & dosage , Dexamethasone/toxicity , Drug Liberation , Joints/drug effects , Joints/pathology , L-Selectin/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/pathology , Male , Neutrophils/pathology , Palmitates/chemistry , Rats, Wistar , Tissue Distribution
10.
AAPS PharmSciTech ; 20(5): 188, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31093777

ABSTRACT

Mannose receptor (CD206) and E-selectin are selectively expressed in M2-like tumor-associated macrophages (M2-TAMs) and activated endothelial cells of vessels surrounding tumor tissues. With the knowledge that D-mannose is the natural ligand of mannose receptors and L-fucose is the key calcium chelator for tumor-associated carbohydrate antigens (TACAs) binding to E-selectin, herein, we firstly reported D-mannose polyethylene glycol (PEG) conjugates (Man-PEG) and L-fucose PEG conjugates (Fuc-PEG) co-modified liposomal doxorubicin (DOX-MFPL) to improve tumor-targeting ability. The dual-ligand modified PEGylated liposomes (DOX-MFPL) were assessed by both in vitro and in vivo trials. Compared with the single-ligand D-mannose- or L-fucose-modified liposomes (DOX-MPL or DOX-FPL), DOX-MFPL achieved an increased distribution of DOX in tumor tissues. The antitumor study based on S180 tumor-bearing mice was conducted and the superior tumor inhibitory rate was shown with DOX-MFPL, probably owing to the superior tumor-targeting effect of DOX-MFPL and the modulation of the tumor microenvironment with the exhaustion of TAMs. In general, the dual-ligand drug delivery systems are expected to be promising in the development of specific and efficient methods for tumor treatment.


Subject(s)
Doxorubicin/analogs & derivatives , Drug Delivery Systems , Fucose/chemistry , Mannose/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Line, Tumor , Doxorubicin/administration & dosage , Humans , Ligands , Male , Mice , Polyethylene Glycols/administration & dosage , RAW 264.7 Cells
11.
Acta Biomater ; 92: 184-195, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31108259

ABSTRACT

Ibrutinib (IBR), an irreversible Bruton's tyrosine kinase (BTK) inhibitor, is expected to be a potent therapeutic modality, given that BTK is overexpressed in tumor-associated macrophages (TAMs) and participates in promoting tumor progression, angiogenesis, and immunosuppression. However, rapid clearance in vivo and low tumor accumulation have rendered effective uptake of IBR by TAMs challenge. Herein, we designed and synthesized a sialic acid (SA)-stearic acid conjugate modified on the surface of nanocomplexes to encapsulate IBR (SA/IBR/EPG) for targeted immunotherapy. Amphiphilic egg phosphatidylglycerol (EPG) structure and strong IBR-EPG interactions render these nanocomplexes high IBR loading capacity, prolonged blood circulation, and optimal particle sizes (∼30 nm), which can effectively deliver IBR to the tumor, followed by subsequent internalization of IBR by TAMs through SA-mediated active targeting. In vitro and in vivo tests showed that the prepared SA/IBR/EPG nanocomplexes could preferentially accumulate in TAMs and exert potent antitumor activity. Immunofluorescence staining analysis further confirmed that SA/IBR/EPG remarkably inhibited angiogenesis and tumorigenic cytokines released by TAM and eventually suppressed tumor progression, without eliciting any unwanted effect. Thus, SA-decorated IBR nanocomplexes present a promising strategy for cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Ibrutinib (IBR), an irreversible Bruton's tyrosine kinase (BTK) inhibitor, is expected to be a potent therapeutic modality, given that BTK is overexpressed in tumor-associated macrophages (TAMs) and participates in promoting tumor progression, angiogenesis, and immunosuppression. However, rapid clearance in vivo and low tumor accumulation have rendered effective uptake of IBR by TAMs challenge. Herein, we designed and synthesized a sialic acid (SA)-stearic acid conjugate modified on the surface of nanocomplexes to encapsulate IBR (SA/IBR/EPG) for targeted delivery of IBR to TAMs. The developed SA/IBR/EPG nanocomplexes exhibited high efficiency in targeting TAMs and inhibiting BTK activation, consequently inhibiting Th2 tumorigenic cytokine release, reducing angiogenesis, and suppressing tumor growth. These results implied that the SA/IBR/EPG nanocomplex could be a promising strategy for TAM-targeting immunotherapy with minimal systemic side effects.


Subject(s)
Drug Delivery Systems , Immunotherapy , Macrophages/metabolism , N-Acetylneuraminic Acid/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Stearic Acids/chemistry , Adenine/analogs & derivatives , Animals , Macrophages/drug effects , Male , Mice , N-Acetylneuraminic Acid/chemical synthesis , Nanoparticles/ultrastructure , Neoplasms/immunology , Phosphatidylglycerols/chemistry , Piperidines , Proton Magnetic Resonance Spectroscopy , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RAW 264.7 Cells , Rats, Wistar , Stearic Acids/chemical synthesis
12.
Int J Pharm ; 558: 187-200, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30654062

ABSTRACT

To overstep the dilemma of chemical drug degradation within powerful lysosomes of tumor associated macrophages (TAMs), a sialic acid-polyethylenimine-cholesterol (SA-PEI-CH) modified liposomal doxorubicin (DOX-SPCL) was designed with both TAMs targeting and smart lysosomal trafficking. The modified liposome DOX-SPCL performed particle size as 103.2 ±â€¯3.1 nm and zeta potential as -4.5 ±â€¯0.9 mV with encapsulation efficiency as 95.8 ±â€¯0.5%. In in vitro cell experiments, compared with conventional liposomal doxorubicin (DOX-CL) and PEGylated liposomal doxorubicin (DOX-PL), DOX-SPCL showed a selective binding on TAMs and a mere lysosomal concentration. In pharmacokinetic study, DOX-SPCL effectively impeded/delayed the disposition of mononuclear phagocyte system (MPS) with a value of AUC0-t as 796.03 ±â€¯66.93 mg L-1 h. In S180 sarcomas bearing mice, DOX-SPCL showed the greatest tumor inhibition rate (92.7% ±â€¯3.6%) compared with DOX-CL (46.4% ±â€¯2.0%) or DOX-PL (58.8% ±â€¯7.6%). The <0.5% positive region of TAMs in tumor section indicated a super TAMs exhaustion for DOX-SPCL treatment. Conclusively, DOX-SPCL was supposed as a safe and effective liposomal preparation for clinical sarcoma treatment via TAMs targeting/deletion delivery strategy.


Subject(s)
Cholesterol/administration & dosage , Doxorubicin/analogs & derivatives , N-Acetylneuraminic Acid/administration & dosage , Polyethyleneimine/administration & dosage , Sarcoma/drug therapy , Animals , Cell Line , Cell Survival/drug effects , Cholesterol/chemistry , Cholesterol/pharmacokinetics , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Drug Liberation , Macrophages , Male , Mice , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/pharmacokinetics , Neoplasms , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacokinetics , Rats, Wistar
13.
Cancer Chemother Pharmacol ; 83(2): 361-374, 2019 02.
Article in English | MEDLINE | ID: mdl-30506269

ABSTRACT

Macrophage-mediated drug delivery system has emerged and gained wide interest as a novel strategy for cancer treatment. Among them, RAW264.7 cell was commonly used as the macrophage model for antitumor drug loading and delivery. However, this cell line was a macrophage-like cancerous cell with both immunogenicity and pro-tumorigenic properties, which may interfere with the positive response of the host immune system to developed tumor. Thus, the safety and efficacy of the RAW264.7 cell line as a drug carrier for cancer therapy remain questionable. Here, we constructed doxorubicin-loaded RAW264.7 cells and examined its antitumor efficacy in S180 tumor-bearing mice. The bio-distribution of RAW264.7 cells was determined by in vivo imaging technique, showing a high accumulation level of RAW264.7 cells in mice livers, spleens, and thymuses. A phenomenon of accelerated tumor growth was observed in mice treated with doxorubicin-loaded RAW264.7 cells. Thereafter, the effect of frequency, dose, and viability of injected RAW264.7 cells on S180 tumor growth was further investigated. The underlying mechanism was confirmed, attributing to the immune tolerance induced by excessive RAW264.7 cells. Our findings emphasized the latent limitation of RAW264.7 cells as drug carrier in current researches, and provided an experimental basis for the clinical safety of cell-mediated drug delivery system.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Biomimetic Materials/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems , Macrophages/transplantation , Sarcoma, Experimental/drug therapy , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Apoptosis , Cell Proliferation , Doxorubicin/pharmacokinetics , Drug Liberation , Humans , Macrophages/cytology , Male , Mice , RAW 264.7 Cells , Sarcoma, Experimental/pathology , Tumor Cells, Cultured
14.
AAPS PharmSciTech ; 19(8): 3571-3583, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30209789

ABSTRACT

As an irreversible small-molecule kinase inhibitor, ibrutinib (IBR) exhibits excellent tumor suppression in various tumor cells. However, IBR is insoluble at neutral pH and can dissolve only at low pH: thus, commercial IBR products present poor bioavailability and weakened in vivo antitumor activity. Therefore, we aimed to develop a stable IBR-phospholipid complex (IBR-PC) using egg phosphatidylglycerol (EPG) as excipients to improve the bioavailability of IBR and further enhance its antitumor effects. IBR-PC was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XPRD), and molecular docking and simulation test, which all explained the interactions of two components. Solubility tests demonstrate that the novel formulation can maintain excellent solubility (above 5 mg/mL) at various pH levels. Storage stability tests show that no change in particle size or content of IBR-PC was observed during the experimental period. In vivo pharmacokinetic results demonstrated that the relative bioavailability of IBR-PC was a 9.14-fold improvement relative to that of IBR suspension (IBR-susp). Furthermore, IBR-PC was associated with enhanced cytotoxic activity in vitro and superior tumor growth suppression in vivo compared to that resulting from the free IBR. Thus, the proposed IBR-PC system is a promising drug delivery system that enhances the oral bioavailability of IBR, resulting in its improved in vivo antitumor effect.


Subject(s)
Drug Delivery Systems , Phospholipids/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Adenine/analogs & derivatives , Administration, Oral , Animals , Biological Availability , Hydrogen-Ion Concentration , Male , Piperidines , Rats , Rats, Wistar , Solubility
15.
Drug Deliv ; 25(1): 1200-1212, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29791241

ABSTRACT

Poly(sialic acid) (PSA) is a natural hydrophilic biodegradable and non-immunogenic biopolymer, receptors for its monomer are expressed on peripheral blood neutrophils (PBNs), which plays important roles in the progression and invasion of tumors. A poly(sialic acid)-octadecylamine conjugate (PSA-ODA) was synthesized and then anchor it on the surface of liposomal pixantrone (Pix-PSL), to achieve an improved anticancer effect. The liposomes were prepared using a remote loading method via a pH gradient, and then assessed for particle size, zeta potential encapsulation efficiency, in vitro release, and in vitro cytotoxicity. Simultaneously, in vitro and in vivo cellular uptake studies confirmed that PSA-decorated liposomes provided an enhanced accumulation of liposomes in PBNs. An in vivo study presented that the anti-tumor activity of Pix-PSL was superior to that of other Pix formulations, probably due to the efficient targeting of PBNs by Pix-PSL, after which PBN containing Pix-PSL (Pix-PSL/PBNs) in the blood circulation are recruited by the tumor microenvironment. These findings suggest that PSA-decorated liposomal Pix may provide a neutrophil-mediated drug delivery system (DDS) for the eradication of tumors, which represents a promising approach for the tumor targeting of chemotherapeutic treatments.


Subject(s)
Amines/chemistry , Isoquinolines/administration & dosage , Liposomes/chemistry , Lung Neoplasms/drug therapy , N-Acetylneuraminic Acid/chemistry , Neutrophils/physiology , Polymers/chemistry , A549 Cells , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Delivery Systems/methods , Humans , Isoquinolines/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Particle Size , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...