Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 257: 121741, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744061

ABSTRACT

Biological treatment is commonly used in coking wastewater (CWW) treatment. Prokaryotic microbial communities in CWW treatment have been comprehensively studied. However, viruses, as the critical microorganisms affecting microbial processes and thus engineering parameters, still remain poorly understood in CWW treatment context. Employing viromics sequencing, the composition and function of the viral community in CWW treatment were discovered, revealing novel viral communities and key auxiliary metabolic functions. Caudovirales appeared to be the predominant viral order in the oxic-hydrolytic-oxic (OHO) CWW treatment combination, showing relative abundances of 62.47 %, 56.64 % and 92.20 % in bioreactors O1, H and O2, respectively. At the family level, Myoviridae, Podoviridae and Siphoviridae mainly prevailed in bioreactors O1 and H while Phycodnaviridae dominated in O2. A total of 56.23-92.24% of novel viral contigs defied family-level characterization in this distinct CWW habitat. The virus-host prediction results revealed most viruses infecting the specific functional taxa Pseudomonas, Acidovorax and Thauera in the entire OHO combination, demonstrating the viruses affecting bacterial physiology and pollutants removal from CWW. Viral auxiliary metabolic genes (AMGs) were screened, revealing their involvement in the metabolism of contaminants and toxicity tolerance. In the bioreactor O1, AMGs were enriched in detoxification and phosphorus ingestion, where glutathione S-transferase (GSTs) and beta-ketoadipyl CoA thiolase (fadA) participated in biodegradation of polycyclic aromatic hydrocarbons and phenols, respectively. In the bioreactors H and O2, the AMGs focused on cell division and epicyte formation of the hosts, where GDPmannose 4,6-dehydratase (gmd) related to lipopolysaccharides biosynthesis was considered to play an important role in the growth of nitrifiers. The diversities of viruses and AMGs decreased along the CWW treatment process, pointing to a reinforced virus-host adaptive strategy in stressful operation environments. In this study, the symbiotic virus-bacteria interaction patterns were proposed with a theoretical basis for promoting CWW biological treatment efficiency. The findings filled the gaps in the virus-bacteria interactions at the full-scale CWW treatment and provided great value for understanding the mechanism of biological toxicity and sludge activity in industrial wastewater treatment.


Subject(s)
Wastewater , Wastewater/virology , Bioreactors , Bacteria/metabolism , Waste Disposal, Fluid/methods , Coke , Viruses , Symbiosis
2.
Cell Death Dis ; 14(8): 573, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644011

ABSTRACT

Persistence of leukemic stem cells (LSCs) is one of the determining factors to acute myeloid leukemia (AML) treatment failure and responsible for the poor prognosis of the disease. Hence, novel therapeutic strategies that target LSCs are crucial for treatment success. We investigated if targeting Bcl-2 and peroxisome proliferator activated receptor α (PPARα), two distinct cell survival regulating mechanisms could eliminate LSCs. This study demonstrate that the Bcl-2 inhibitor venetoclax combined with the PPARα agonist chiglitazar resulted in synergistic killing of LSC-like cell lines and CD34+ primary AML cells while sparing their normal counterparts. Furthermore, the combination regimen significantly suppressed AML progression in patient-derived xenograft (PDX) mouse models. Mechanistically, chiglitazar-mediated PPARα activation inhibited the transcriptional activity of the PIK3AP1 gene promoter and down-regulated the PI3K/Akt signaling pathway and anti-apoptotic Bcl-2 proteins, leading to cell proliferation inhibition and apoptosis induction, which was synergized with venetoclax. These findings suggest that combinatorial Bcl-2 inhibition and PPARα activation selectively eliminates AML cells in vivo and vitro, representing an effective therapy for patients with relapsed and refractory AML.


Subject(s)
PPAR alpha , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Disease Models, Animal , Stem Cells
3.
Discov Oncol ; 14(1): 118, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37392305

ABSTRACT

Refractory or relapsed (R/R) AML is the most challenging form of AML to treat. Due to frequent genetic mutations, therapy alternatives are limited. Here, we identified the role of ritanserin and its target DGKα in AML. Several AML cell lines and primary patient cells were treated with ritanserin and subjected to cell proliferation, apoptosis and gene analyses with CCK-8 assay, Annexin V/PI assay and Western blotting, respectively. We also evaluated the function of the ritanserin target diacylglycerol kinase alpha (DGKα) in AML by bioinformatics. In vitro experiments have revealed that ritanserin inhibits AML progression in a dose- and time-dependent manner, and it shows an anti-AML effect in xenograft mouse models. We further demonstrated that the expression of DGKα was elevated in AML and correlated with poor survival. Mechanistically, ritanserin negatively regulates SphK1 expression through PLD signaling, also inhibiting the Jak-Stat and MAPK signaling pathways via DGKα. These findings suggest that DGKα may be an available therapeutic target and provide effective preclinical evidence of ritanserin as a promising treatment for AML.

4.
Front Immunol ; 14: 1139517, 2023.
Article in English | MEDLINE | ID: mdl-36960073

ABSTRACT

Introduction: Despite accumulated evidence in T-cell exhaustion in acute myeloid leukemia (AML), the immunotherapeutic targeting exhausted T cells such as programmed cell death protein 1 (PD-1) blockade in AML failed to achieve satisfying efficacy. Characteristics of exhausted T cells in AML remained to be explored. Methods: Phenotypic analysis of T cells in bone marrow (BM) using flow cytometry combining senescent and exhausted markers was performed in de novo AML patients and healthy donors as well as AML patients with complete remission (CR). Functional analysis of T-cell subsets was also performed in de novo AML patients using flow cytometry. Results: T cells experienced a phenotypic shift to terminal differentiation characterized by increased loss of CD28 expression and decrease of naïve T cells. Additionally, lack of CD28 expression could help define a severely exhausted subset from generally exhausted T cells (PD-1+TIGIT+). Moreover, CD28- subsets rather than CD28+ subsets predominantly contributed to the significant accumulation of PD-1+TIGIT+ T cells in AML patients. Further comparison of de novo and CR AML patients showed that T-cell exhaustion status was improved after disease remission, especially in CD28+ subsets. Notably, higher frequency of CD28-TIGIT-CD4+ T cells correlated with the presence of minimal residual disease in AML-CR group. However, the correlation between CD28- exhausted T cells and cytogenetic risk or white blood cell count was not observed, except for that CD28- exhausted CD4+ T cells correlated with lymphocyte counts. Intriguingly, larger amount of CD28-TGITI+CD8+ T cells at diagnosis was associated with poor treatment response and shorter leukemia free survival. Discussion: In summary, lack of CD28 expression defined a severely exhausted status from exhausted T cells. Accumulation of CD28- exhausted T cells was linked to occurrence of AML, and correlated to poor clinical outcome. Our data might facilitate the development of combinatory strategies to improve the efficacy of PD-1 blockade in AML.


Subject(s)
CD8-Positive T-Lymphocytes , Leukemia, Myeloid, Acute , Humans , CD8-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/metabolism , CD28 Antigens/metabolism , T-Cell Exhaustion , Leukemia, Myeloid, Acute/therapy , Receptors, Immunologic/metabolism
5.
J Cancer Res Clin Oncol ; 149(9): 5513-5529, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36471019

ABSTRACT

PURPOSE: Double-hit lymphoma (DHL) is a rare and aggressive mature B-cell malignancy with concurrent MYC and BCL2 rearrangements. When DHL becomes relapsed or refractory, it becomes resistant to the majority of therapeutic approaches and has subpar clinical results. Therefore, innovative therapeutics for this particular patient population are urgently needed. METHODS: Orelabrutinib, a new oral BTK inhibitor, combined with the Bcl-2 inhibitor venetoclax, was used to confirm the antitumor effect of DHL. Cell counting kit-8 and Annexin V-FITC/PI assays were used to examine the interaction of this combined regimen on DHL cell lines and primary lymphoma cells. RNA sequencing, EdU incorporation assay, mitochondrial membrane potential assay, and western blotting were employed to explore the molecule mechanism for the cytotoxicity of orelabrutinib with or without venetoclax against DHL cell lines. RESULTS: In this study, orelabrutinib combined with venetoclax synergistically induced DHL cell death, as evidenced by the inhibition of cell proliferation, the induct of cell cycle arrest, and the promotion of cell apoptosis via the mitochondrial pathway. Orelabrutinib treatment alters genome-wide gene expression in DHL cells. The combined regimen decreases the expression of BTK and Mcl-1, potentially interfering with the activity and crosstalk of PI3K/AKT signaling and p38/MAPK signaling. In addition, the combination of orelabrutinib and venetoclax shows cytotoxic activity in primary B-lymphoma cells. CONCLUSION: In summary, these findings reveal a novel therapy targeting BCR signaling and the Bcl-2 family for DHL patients with a poor prognosis.


Subject(s)
Antineoplastic Agents , Lymphoma, Large B-Cell, Diffuse , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/genetics
6.
Biosens Bioelectron ; 219: 114803, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36252315

ABSTRACT

Acute myeloid leukemia (AML) requires close monitoring of remission status for timely disease management. Liquid biopsy serves as a noninvasive approach for evaluating treatment response and guiding therapeutic modifications. Herein, we designed a non-invasive Leukemic stem cell Specific Capture Chip (LSC-Chip) with reversible recognition interface for AML remission status monitoring and prognosis prediction. A stem cell marker CD34 antibody coated herringbone chip with disulfide linkers was designed to capture and release leukemic stem cells (LSCs) in peripheral blood for efficient LSC enumeration and downstream single-cell analysis. Samples from 32 AML patients and 10 healthy donors were recruited for LSC enumeration and prognosis-associated subtyping with panels of official LSC markers (CD34+/CD123+/CD38-) and (Tie2+/CD34+/CD123+/CD38-), respectively. A cutoff value of 2.5 LSCs per milliliters of peripheral blood can be used to precisely distinguish non-remission AML patients from complete remission group. Moreover, single-cell RNA-seq of LSCs was performed to check different transcriptional profiles of LSC subtypes. Overall, the LSC-Chip with reversible recognition interface enabled reliable detection of LSCs from AML patient samples for noninvasive remission status monitoring and prognosis prediction in clinical AML management.

7.
J Hematol Oncol ; 15(1): 115, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35996180

ABSTRACT

BACKGROUND: Patients with follicular lymphoma (FL) who experience disease progression within 24 months (POD24) have inferior outcomes. The tumor immune microenvironment (TIME) plays a crucial role in pathogenesis and progression of follicular lymphoma (FL). However, TIME evolution during progression of disease within 24 months (POD24) is elusive. METHODS: Spatially resolved and single-cell image mass cytometry with a panel of 36 metal-tagged antibodies was used to quantitatively analyze the TIME structure in 13 paired FLs at diagnosis and POD24. RESULTS: Follicles and peri-follicular regions were well dissected in structure. Peri-follicular regions represented a barrier for immune infiltration into the follicles. More FL-cells in the peri-follicular regions suffered CD8+T cells attacks under simultaneous protection of regulatory T cells (Tregs) and/or macrophages compared with that in the follicles irrespective of POD24. During POD24, increased CD163- macrophages with PD-1 ligand upregulation and decreased CD8+T cells with upregulated LAG-3 expression around FL-cells were observed in the follicles. Spatial analyses demonstrated that FL-cells interacted more intimately with macrophages than with Tregs and less with cytotoxic T cells in both peri-follicular regions and follicles during POD24. In comparison, macrophages also cooperated more frequently with Tregs to simultaneously hijack FL-cells, creating an enhanced immunosuppressive environment in both peri-follicular and follicular regions during POD24. CONCLUSIONS: Peri-follicular regions function as a barrier by recruiting both CD8+T cells and immunosuppressive cells, protecting follicular FL-cells from immune attack at diagnosis or POD24. FL-cells reside in a more immune-compromised microenvironment and evade immune cell attacks during POD24. Novel immunotherapeutic approaches harnessing LAG-3, macrophages, and Tregs will be empowered to overcome poor outcomes in patients with FL POD24.


Subject(s)
Lymphoma, Follicular , Disease Progression , Humans , Image Cytometry , Immunosuppressive Agents/therapeutic use , Lymphoma, Follicular/drug therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...