Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38696094

ABSTRACT

In this study, Pediococcus pentosaceus C-2-1 and C23221 contained genes encoding penocin and pediocin PA-1, mined by antiSMASH. The penocin structural gene pedA from Pediococcus pentosaceus C-2-1 was successfully expressed in Escherichia coli BL21. The presence of a 6.5 kDa recombinant penocin was confirmed by Tricine-SDS-PAGE, and the specific activity increased by 1.54-fold. The bacteriocins produced by Pediococcus pentosaceus C23221 were purified using acetic ether extraction, Sepharose Fast Flow, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC); the amino acid sequence of this bacteriocin was identical to pediocin PA-1 by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), which confirmed the expression of pediocin PA-1 gene; and the specific activity increased by 24.39-fold. The heterologous expression and purification of bacteriocins have proved the expression of pediocin-like produced by Pediococcus pentosaceus. This provides a theoretical basis for the subsequent development and application of pediocin-like.

2.
Article in English | MEDLINE | ID: mdl-38451405

ABSTRACT

The bacteriocin-producing Lactiplantibacillus plantarum SL47 was isolated from conventional fermented sausages, and the bacteriocin SL47 was purified using ethyl acetate, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Bacteriocin SL47 was identified by HPLC-MS/MS combined with whole-genome sequencing, and the results showed it consisted of plantaricin A, J, K, and N. Further characterization analysis showed that the bacteriocin SL47 was highly thermostable (30 min, 121 °C), pH stable (2-10), sensitive to protease and exhibited broad-spectrum antibacterial ability against Gram-positive and Gram-negative bacteria. The mechanism of action showed that the bacteriocin SL47 increased cell membrane permeability, and 2 × minimum inhibitory concentration (MIC) treatment for 40 min caused apoptosis of Staphylococcus aureus F2. The count of S. aureus in the sausage that was inoculated with L. plantarum SL47 and bacteriocin SL47 decreased by about 64% and 53% of that in the initial stage, respectively. These results indicated the potential of L. plantarum SL47 and bacteriocin SL47 as a bio-preservative in meat products.

SELECTION OF CITATIONS
SEARCH DETAIL
...