Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Cell Rep ; 43(4): 114120, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625796

ABSTRACT

Border-associated macrophages (BAMs) are tissue-resident macrophages that reside at the border of the central nervous system (CNS). Since BAMs originate from yolk sac progenitors that do not persist after birth, the means by which this population of cells is maintained is not well understood. Using two-photon microscopy and multiple lineage-tracing strategies, we determine that CCR2+ monocytes are significant contributors to BAM populations following disruptions of CNS homeostasis in adult mice. After BAM depletion, while the residual BAMs possess partial self-repopulation capability, the CCR2+ monocytes are a critical source of the repopulated BAMs. In addition, we demonstrate the existence of CCR2+ monocyte-derived long-lived BAMs in a brain compression model and in a sepsis model after the initial disruption of homeostasis. Our study reveals that the short-lived CCR2+ monocytes transform into long-lived BAM-like cells at the CNS border and subsequently contribute to BAM populations.


Subject(s)
Brain , Macrophages , Monocytes , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Monocytes/metabolism , Macrophages/metabolism , Mice , Brain/pathology , Brain/metabolism , Mice, Inbred C57BL , Homeostasis
2.
Neuron ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38614103

ABSTRACT

Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.

3.
Virol J ; 21(1): 100, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689312

ABSTRACT

BACKGROUND: In the aftermath of the COVID-19 pandemic, there has been a surge in human metapneumovirus (HMPV) transmission, surpassing pre-epidemic levels. We aim to elucidate the clinical and epidemiological characteristics of HMPV infections in the post-COVID-19 pandemic era. METHODS: In this retrospective single-center study, participants diagnosed with laboratory confirmed HMPV infection through Targeted Next Generation Sequencing were included. The study encompassed individuals admitted to Henan Children's Hospital between April 29 and June 5, 2023. Demographic information, clinical records, and laboratory indicators were analyzed. RESULTS: Between April 29 and June 5, 2023, 96 pediatric patients were identified as infected with HMPV with a median age of 33.5 months (interquartile range, 12 ~ 48 months). The majority (87.5%) of infected children were under 5 years old. Notably, severe cases were statistically younger. Predominant symptoms included fever (81.3%) and cough (92.7%), with wheezing more prevalent in the severe group (56% vs 21.1%). Coinfection with other viruses was observed in 43 patients, with Epstein-Barr virus (EBV) (15.6%) or human rhinovirus A (HRV type A) (12.5%) being the most common. Human respiratory syncytial virus (HRSV) coinfection rate was significantly higher in the severe group (20% vs 1.4%). Bacterial coinfection occurred in 74 patients, with Haemophilus influenzae (Hin) and Streptococcus pneumoniae (SNP) being the most prevalent (52.1% and 41.7%, respectively). Severe patients demonstrated evidence of multi-organ damage. Noteworthy alterations included lower concentration of IL-12p70, decreased lymphocytes percentages, and elevated B lymphocyte percentages in severe cases, with statistical significance. Moreover, most laboratory indicators exhibited significant changes approximately 4 to 5 days after onset. CONCLUSIONS: Our data systemically elucidated the clinical and epidemiological characteristics of pediatric patients with HMPV infection, which might be instructive to policy development for the prevention and control of HMPV infection and might provide important clues for future HMPV research endeavors.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Humans , China/epidemiology , Child, Preschool , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Retrospective Studies , Female , Male , Infant , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , COVID-19/epidemiology , Child , Coinfection/epidemiology , Coinfection/virology , SARS-CoV-2/genetics
4.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405754

ABSTRACT

Microglia actively survey the brain and dynamically interact with neurons to maintain brain homeostasis. Microglial Gi-protein coupled receptors (Gi-GPCRs) play a critical role in microglia-neuron communications. However, the impact of temporally activating microglial Gi signaling on microglial dynamics and neuronal activity in the homeostatic brain remains largely unknown. In this study, we employed Gi-based Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) to selectively and temporally modulate microglial Gi signaling pathway. By integrating this chemogenetic approach with in vivo two-photon imaging, we observed that exogenous activation of microglial Gi signaling transiently inhibited microglial process dynamics, reduced neuronal activity, and impaired neuronal synchronization. These altered neuronal functions were associated with a decrease in interactions between microglia and neuron somata. Altogether, this study demonstrates that acute, exogenous activation of microglial Gi signaling can regulate neuronal circuit function, offering a potential pharmacological target for neuromodulation through microglia.

5.
Nat Neurosci ; 27(3): 449-461, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177340

ABSTRACT

Microglia are resident immune cells of the central nervous system and play key roles in brain homeostasis. During anesthesia, microglia increase their dynamic process surveillance and interact more closely with neurons. However, the functional significance of microglial process dynamics and neuronal interaction under anesthesia is largely unknown. Using in vivo two-photon imaging in mice, we show that microglia enhance neuronal activity after the cessation of isoflurane anesthesia. Hyperactive neuron somata are contacted directly by microglial processes, which specifically colocalize with GABAergic boutons. Electron-microscopy-based synaptic reconstruction after two-photon imaging reveals that, during anesthesia, microglial processes enter into the synaptic cleft to shield GABAergic inputs. Microglial ablation or loss of microglial ß2-adrenergic receptors prevents post-anesthesia neuronal hyperactivity. Our study demonstrates a previously unappreciated function of microglial process dynamics, which enable microglia to transiently boost post-anesthesia neuronal activity by physically shielding inhibitory inputs.


Subject(s)
Anesthesia , Microglia , Mice , Animals , Microglia/physiology , Brain/physiology , Synapses/physiology , Neurons/physiology
6.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38260601

ABSTRACT

In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about the role TREM2 plays in epileptogenesis. To investigate this, we utilized TREM2 knockout (KO) mice within the murine intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both acute status epilepticus and spontaneous recurrent seizures characteristic of chronic focal epilepsy. Mechanistically, phagocytic clearance of damaged neurons by microglia was impaired in TREM2 KO mice and the reduced phagocytic capacity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between microglial phagocytic activity and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity may be important to epileptogenesis and the progression of focal temporal lobe epilepsy.

7.
Brain ; 147(2): 566-589, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37776513

ABSTRACT

Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.


Subject(s)
Malaria, Cerebral , Mice , Humans , Animals , Malaria, Cerebral/pathology , Malaria, Cerebral/prevention & control , Endothelial Cells/pathology , Brain/pathology , Blood-Brain Barrier/pathology , CD8-Positive T-Lymphocytes , Endothelium/pathology , Mice, Inbred C57BL , Disease Models, Animal
8.
Brain Behav Immun ; 115: 406-418, 2024 01.
Article in English | MEDLINE | ID: mdl-37926132

ABSTRACT

Microglia are key players in maintaining brain homeostasis and exhibit phenotypic alterations in response to epileptic stimuli. However, it is still relatively unknown if these alterations are pro- or anti-epileptic. To unravel this dilemma, we employed chemogenetic manipulation of microglia using the artificial Gi-Dreadd receptor within a kainic acid (KA) induced murine seizure model. Our results indicate that acute Gi-Dreadd activation with Clozapine-N-Oxide can reduce seizure severity. Additionally, we observed increased interaction between microglia and neuronal soma, which correlated with reduced neuronal hyperactivity. Interestingly, prolonged activation of microglial Gi-Dreadds by repeated doses of CNO over 3 days, arrested microglia in a less active, homeostatic-like state, which associated with increased neuronal loss after KA induced seizures. RNAseq analysis revealed that prolonged activation of Gi-Dreadd interferes with interferon ß signaling and microglia proliferation. Thus, our findings highlight the importance of microglial Gi signaling not only during status epilepticus (SE) but also within later seizure induced pathology.


Subject(s)
Microglia , Status Epilepticus , Mice , Animals , Microglia/pathology , Seizures/chemically induced , Status Epilepticus/chemically induced , Anticonvulsants , Brain/pathology , Kainic Acid/pharmacology
9.
Neuro Oncol ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37941134

ABSTRACT

BACKGROUND: Myeloid cells comprise up to 50% of the total tumor mass in glioblastoma (GBM) and have been implicated in promoting tumor progression and immunosuppression. Modulating the response of myeloid cells to the tumor has emerged as a promising new approach for cancer treatment. In this regard, we focus on the Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which has recently emerged as a novel immune modulator in peripheral tumors. METHODS: We studied the TREM2 expression profile in various patient tumor samples and conducted single-cell transcriptomic analysis in both glioblastoma patients and the GL261 mouse glioma model. We utilized multiple mouse glioma models and employed state-of-the-art techniques such as in vivo two-photon imaging, spectrum flow cytometry, and in vitro co-culture assays to study TREM2 function in myeloid cell-mediated phagocytosis of tumor cells, antigen presentation, and response of CD4+ T cells within the tumor hemispheres. RESULTS: Our research revealed significantly elevated levels of TREM2 expression in brain tumors compared to other types of tumors in patients. TREM2 was predominantly localized in tumor-associated myeloid cells and was highly expressed in nearly all microglia, as well as various subtypes of macrophages. Surprisingly, in pre-clinical glioma models, TREM2 deficiency did not confer a beneficial effect; instead, it accelerated glioma progression. Through detailed investigations, we determined that TREM2 deficiency impaired the ability of tumor-myeloid cells to phagocytose tumor cells and led to reduced expression of MHCII. This deficiency further significantly decreased the presence of CD4+ T cells within the tumor hemispheres. CONCLUSIONS: Our study unveiled a previously unrecognized protective role of tumor-myeloid TREM2. Specifically, we found TREM2 enhance the phagocytosis of tumor cells and promote an immune response by facilitating MHCII-associated CD4+ T cell responses against gliomas.

10.
Ecol Evol ; 13(11): e10672, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920769

ABSTRACT

Aim: As invasive plants are often in a non-equilibrium expansion state, traditional species distribution models (SDMs) are likely underestimating their suitable habitat. New methods are necessary to identify potential invasion risk areas. Location: Tropical monsoon rainforest and subtropical evergreen broad-leaved forest regions in China. Methods: We took Parthenium hysterophorus as a case study to predict its potential invasion risk using climate, terrain, and human activity variables. First, a generalized joint attribute model (GJAM) was constructed using the occurrence of P. hysterophorus and its 27 closely related species in Taiwan, given it is widely distributed in Taiwan. Based on the output correlation values, two positively correlated species (Cardiospermum halicacabum and Portulaca oleracea) and one negatively correlated species (Crassocephalum crepidioides) were selected as indicator species. Second, the distributions of P. hysterophorus and its indicator species in the study area were predicted separately using an ensemble model (EM). Third, when selecting indicator species to construct indicator SDMs, two treatments (indicator species with positive correlation only, or both positive and negative correlation) were considered. The indicator species' EM predictions were overlaid using a weighted average method, and a better indicator SDMs prediction result was selected by comparison. Finally, the EM prediction result of P. hysterophorus was used to optimize the indicator SDMs result by a maximum overlay. Results: The optimized indicator SDMs prediction showed an expanded range beyond the current geographic range compared to EM and the thresholds for predicting key environmental variables were wider. It also reinforced the human activities' influence on the potential distribution of P. hysterophorus. Main Conclusions: For invasive plants with expanding ranges, information about indicator species distribution can be borrowed as a barometer for areas not currently invaded. The optimized indicator SDMs allow for more efficient potential invasion risk prediction. On this basis, invasive plants can be prevented earlier.

11.
Plants (Basel) ; 12(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37653840

ABSTRACT

Mangrove forests are one of the most productive and seriously threatened ecosystems in the world. The widespread invasion of Spartina alterniflora has seriously imperiled the security of mangroves as well as coastal mudflat ecosystems. Based on a model evaluation index, we selected RF, GBM, and GLM as a predictive model for building a high-precision ensemble model. We used the species occurrence records combined with bioclimate, sea-land topography, and marine environmental factors to predict the potentially suitable habitats of mangrove forests and the potentially suitable invasive habitats of S. alterniflora in the southeastern coast of China. We then applied the invasion risk index (IRI) to assess the risk that S. alterniflora would invade mangrove forests. The results show that the suitable habitats for mangrove forests are mainly distributed along the coastal provinces of Guangdong, Hainan, and the eastern coast of Guangxi. The suitable invasive habitats for S. alterniflora are mainly distributed along the coast of Zhejiang, Fujian, and relatively less in the southern provinces. The high-risk areas for S. alterniflora invasion of mangrove forests are concentrated in Zhejiang and Fujian. Bioclimate variables are the most important variables affecting the survival and distribution of mangrove forests and S. alterniflora. Among them, temperature is the most important environmental variable determining the large-scale distribution of mangrove forests. Meanwhile, S. alterniflora is more sensitive to precipitation than temperature. Our results can provide scientific insights and references for mangrove forest conservation and control of S. alterniflora.

12.
Cell Rep ; 42(10): 113128, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37742194

ABSTRACT

Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.


Subject(s)
Connexins , Microglia , Microglia/metabolism , Reactive Oxygen Species/metabolism , Connexins/metabolism , Cell Death , Adenosine Triphosphate/metabolism
13.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398001

ABSTRACT

Microglial calcium signaling is rare in a baseline state but shows strong engagement during early epilepsy development. The mechanism and purpose behind microglial calcium signaling is not known. By developing an in vivo UDP fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP signals to the microglial P2Y6 receptor for broad increases in calcium signaling during epileptogenesis. UDP-P2Y6 signaling is necessary for lysosome upregulation across limbic brain regions and enhances production of pro-inflammatory cytokines-TNFα and IL-1ß. Failures in lysosome upregulation, observed in P2Y6 KO mice, can also be phenocopied by attenuating microglial calcium signaling in Calcium Extruder ("CalEx") mice. In the hippocampus, only microglia with P2Y6 expression can perform full neuronal engulfment, which substantially reduces CA3 neuron survival and impairs cognition. Our results demonstrate that calcium activity, driven by UDP-P2Y6 signaling, is a signature of phagocytic and pro-inflammatory function in microglia during epileptogenesis.

14.
Front Vet Sci ; 10: 1207189, 2023.
Article in English | MEDLINE | ID: mdl-37483283

ABSTRACT

Since it was first reported in 1987, porcine reproductive and respiratory syndrome virus (PRRSV) has caused several economic crises worldwide. The current prevalence of PRRSV NADC30-like stains causing clinical disease outbreaks in Chain is highly concerning. Immunization against and the prevention of this infection are burdensome for farming organizations as the pathogen frequently mutates and undergoes recombination. Herein, the genetic characterization of a NADC30-like strain (termed BL2019) isolated from a farm in Guangdong Province, China, was analyzed and its pathogenicity for piglets and sows was assessed. Results revealed that BL2019 exhibits a nucleotide homology of 93.7% with NADC30 PRRSV and its NSP2 coding region demonstrates the same 131aa deletion pattern as that of NADC30 and NADC30-like. Furthermore, we identified two recombination breakpoints located nt5804 of the NSP5-coding region and nt6478 of NSP2-coding region, the gene fragment between the two breakpoints showed higher homology to the TJ strain(a representative strain of highly pathogenic PRRSV) compared to the NADC30 strain. In addition, BL2019 infection in piglets caused fever lasting for 1 week, moderate respiratory clinical signs and obvious visual and microscopic lung lesions; infection in gestating sows affected their feed intake and increased body temperature, abortion rates, number of weak fetuses, and other undesirable phenomena. Therefore, we report a NADC30-like PRRSV strain with partial recombination and a representative strain of HP-PRRSV, strain TJ, that can provide early warning and support for PRRS immune prevention and control.

15.
Adv Mater ; 35(33): e2304116, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37342974

ABSTRACT

Optical fibers can be effective biosensors when employed in early-stage diagnostic point-of-care devices as they can avoid interference from molecules with similar redox potentials. Nevertheless, their sensitivity needs to be improved for real-world applications, especially for small-molecule detection. This work demonstrates an optical microfiber biosensor for dopamine (DA) detection based on the DA-binding-induced aptamer conformational transitions that occur at plasmonic coupling sites on a double-amplified nanointerface. The sensor exhibits ultrahigh sensitivity when detecting DA molecules at the single-molecule level; additionally, this work provides an approach for overcoming optical device sensitivity limits, further extending optical fiber single-molecule detection to a small molecule range (e.g., DA and metal ions). The selective energy enhancement and signal amplification at the binding sites effectively avoid nonspecific amplification of the whole fiber surface which may lead to false-positive results. The sensor can detect single-molecule DA signals in body-fluids. It can detect the released extracellular DA levels and monitor the DA oxidation process. An appropriate aptamer replacement allows the sensor to be used for the detection of other target small molecules and ions at the single-molecule level. This technology offers alternative opportunities for developing noninvasive early-stage diagnostic point-of-care devices and flexible single-molecule detection techniques in theoretical research.


Subject(s)
Biosensing Techniques , Dopamine , Biosensing Techniques/methods , Optical Fibers , Metals , Ions
16.
Mol Psychiatry ; 28(10): 4374-4389, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37280283

ABSTRACT

Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid ß (Aß)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Mice, Transgenic , Vascular Endothelial Growth Factor A , Neutrophil Infiltration , Proteomics , Alzheimer Disease/therapy , Memory Disorders , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Presenilin-1/genetics
17.
Mol Psychiatry ; 28(7): 2857-2871, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37365239

ABSTRACT

Chemogenetic approaches using Designer Receptors Exclusively Activated by Designer Drugs (DREADD, a family of engineered GPCRs) were recently employed in microglia. Here, we used Cx3cr1CreER/+:R26hM4Di/+ mice to express Gi-DREADD (hM4Di) on CX3CR1+ cells, comprising microglia and some peripheral immune cells, and found that activation of hM4Di on long-lived CX3CR1+ cells induced hypolocomotion. Unexpectedly, Gi-DREADD-induced hypolocomotion was preserved when microglia were depleted. Consistently, specific activation of microglial hM4Di cannot induce hypolocomotion in Tmem119CreER/+:R26hM4Di/+ mice. Flow cytometric and histological analysis showed hM4Di expression in peripheral immune cells, which may be responsible for the hypolocomotion. Nevertheless, depletion of splenic macrophages, hepatic macrophages, or CD4+ T cells did not affect Gi-DREADD-induced hypolocomotion. Our study demonstrates that rigorous data analysis and interpretation are needed when using Cx3cr1CreER/+ mouse line to manipulate microglia.


Subject(s)
Microglia , Neurons , Mice , Animals , Neurons/metabolism , Macrophages
18.
Front Cell Infect Microbiol ; 13: 1170505, 2023.
Article in English | MEDLINE | ID: mdl-37153150

ABSTRACT

Background: Low temperature is conducive to the survival of COVID-19. Some studies suggest that cold-chain environment may prolong the survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and increase the risk of transmission. However, the effect of cold-chain environmental factors and packaging materials on SARS-CoV-2 stability remains unclear. Methods: This study aimed to reveal cold-chain environmental factors that preserve the stability of SARS-CoV-2 and further explore effective disinfection measures for SARS-CoV-2 in the cold-chain environment. The decay rate of SARS-CoV-2 pseudovirus in the cold-chain environment, on various types of packaging material surfaces, i.e., polyethylene plastic, stainless steel, Teflon and cardboard, and in frozen seawater was investigated. The influence of visible light (wavelength 450 nm-780 nm) and airflow on the stability of SARS-CoV-2 pseudovirus at -18°C was subsequently assessed. Results: Experimental data show that SARS-CoV-2 pseudovirus decayed more rapidly on porous cardboard surfaces than on nonporous surfaces, including polyethylene (PE) plastic, stainless steel, and Teflon. Compared with that at 25°C, the decay rate of SARS-CoV-2 pseudovirus was significantly lower at low temperatures. Seawater preserved viral stability both at -18°C and with repeated freeze-thaw cycles compared with that in deionized water. Visible light from light-emitting diode (LED) illumination and airflow at -18°C reduced SARS-CoV-2 pseudovirus stability. Conclusion: Our studies indicate that temperature and seawater in the cold chain are risk factors for SARS-CoV-2 transmission, and LED visible light irradiation and increased airflow may be used as disinfection measures for SARS-CoV-2 in the cold-chain environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Refrigeration , Disinfection , Stainless Steel , Plastics , Polytetrafluoroethylene , Polyethylenes
19.
Brain Behav Immun ; 112: 51-76, 2023 08.
Article in English | MEDLINE | ID: mdl-37236326

ABSTRACT

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.


Subject(s)
COVID-19 , Virus Diseases , Mice , Animals , Memory T Cells , Neuroinflammatory Diseases , CD8-Positive T-Lymphocytes , Brain , Immunologic Memory
20.
Fish Shellfish Immunol ; 138: 108860, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257567

ABSTRACT

Disease caused by Singapore grouper iridovirus (SGIV) results in major economic losses in the global grouper aquaculture industry. Vaccination is considered to be the most effective way to protect grouper from SGIV. In this study, the spores of Bacillus subtilis (B.subtilis) WB600 were utilized as the vehicle that the VP19 protein was displayed on the spores surface. To further investigate the effect of oral vaccination, the grouper were orally immunized with B.s-CotC-19 spores. After challenged, the survival rate of grouper orally vaccinated with B.s-CotC-19 spores was 34.5% and the relative percent survival (RPS) was 28.7% compared to the PBS group. Moreover, the viral load in the tissues of the B.s-CotC-19 group was significantly lower than that of the PBS group. The histopathological sections of head kidney and liver tissue from the B.s-CotC-19 group showed significantly less histopathology compared to the PBS group. In addition, the specific IgM levels in serum in the B.s-CotC-19 group was higher than those in the PBS group. In the hindgut tissue, the immune-related gene expression detected by quantitative real-time PCR (qRT-PCR) exhibited an increasing trend in different degrees in the B.s-CotC-19 group, suggesting that the innate and adaptive immune responses were activated. These results indicated that the oral administration of recombinant B.subtilis spores was effective for preventing SGIV infection. This study provided a feasible strategy for the controlling of fish virus diseases.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Iridovirus/physiology , Bacillus subtilis/genetics , Singapore , Spores, Bacterial/genetics , Ranavirus/physiology , Vaccination , DNA Virus Infections/prevention & control , DNA Virus Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...