Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(6): 2460-2464, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240594

ABSTRACT

The sol-gel process for fabricating electrochromic thin films is straightforward, offering advantages such as low cost and ease of compositional control. Herein we prepared GO-Bi-WO3 films with improved electrochromic performance using a simple sol-gel spin-coating method. The sample shows a fast-switching time (1.8 s for coloring and 1.8 s for bleaching), large optical modulation (85% at 630 nm), excellent stability (86.4% retention after 10 200 cycles), and high coloration efficiency (65.9 cm2 C-1). This work indicates the electrochromic performance of WO3-based films can be enhanced by incorporating GO, which provides an effective strategy for the rapid, safe, and efficient fabrication of electrochromic thin films.

2.
Nanotechnology ; 35(6)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991485

ABSTRACT

Developing non-noble-metal electrocatalysts for hydrogen evolution reactions with high activity and stability is the key issue in green hydrogen generation based on electrolytic water splitting. It has been recognized that the stacking of large CoP particles limits the intrinsic activity of as-synthesized CoP catalyst for hydrogen evolution reaction. In the present study, N-MoxC/CoP-0.5 with excellent electrocatalytic activity for hydrogen evolution reaction was prepared using N-MoxC as decoration. A reasonable overpotential of 106 mV (at 10 mA cm-2) and a Tafel slope of 59 mV dec-1in 1.0 M KOH solution was achieved with N-MoxC/CoP-0.5 electrocatalyst, which exhibits superior activity even after working for 37 h. Uniformly distributed ultrafine nanoclusters of the N-MoxC/CoP-0.5 hybrids could provide sufficient interfaces for enhanced charge transfer. The effective capacity of the hydrogen evolution reaction could be preserved in the complex, and the enlarged electrocatalytic surface area could be expected to offer more active sites for the reaction.

3.
Nanoscale ; 15(1): 63-79, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36468697

ABSTRACT

Transition metal oxides have drawn tremendous interest due to their unique physical and chemical properties. As one of the most promising electrochromic (EC) materials, tungsten trioxide (WO3) has attracted great attention due to its exceptional EC characteristics. This review summarizes the background and general concept of EC devices, and key criteria for evaluation of WO3-based EC materials. Special focus is placed on preparation techniques and performance enhancement of WO3 EC films. Specifically, four methods - nanostructuring, regulating crystallinity, fabricating hybrid films, and preparing multilayer composite structures - have been developed to enhance the EC performance of WO3 films. Finally, we offer some important recommendations and perspectives on potential research directions for further study.

4.
Phys Chem Chem Phys ; 18(29): 19595-604, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27332984

ABSTRACT

Unique octagonal shaped BiOCl nanosheets (NS) dominantly exposed with high energy {001} crystal facets have been fabricated via a simple hydrothermal route without using organic surfactants. The dynamics of photogenerated charge carriers have been studied by time-resolved photoluminescence spectroscopy. The fitting parameters of the decay kinetics were used to calculate both the intensity weighted average lifetime (〈τ〉int.), as well as the amplitude weighted average lifetime (〈τ〉amp.) of the photogenerated charge carriers. The 〈τ〉int. and 〈τ〉amp. values for {001} BiOCl NS, i.e., 17.23 ns and 1.94 ns, respectively, were observed to be significantly higher than the corresponding values obtained for pristine BiOCl such as 2.52 ns and 1.07 ns, respectively. Significant quenching of the PL emission intensity of {001} BiOCl NS reflected the enhanced separation of the photogenerated charge carriers. Reduced thickness and in situ iodine doping was favorable to minimize the recombination tendency. The photocatalytic activity was monitored via the photodegradation of RhB under visible light illumination (λ > 400 nm). {001} BiOCl NS exhibited superior performance when compared to pristine BiOCl in terms of the rapid degradation kinetics and higher photonic efficiency. The photocatalytic efficiency of {001} BiOCl NS was 2.8 times higher than pristine BiOCl. Iodine doping induced extended the optical absorption in the visible region and improved the separation of the photogenerated charge carriers, which played an important role to enhance the photocatalytic activity. The photodegradation mechanism was systematically studied using various radical quenchers and it was revealed that photogenerated holes (h(+)) and superoxide radicals (˙O(2-)) actively participated whereas hydroxyl (OH˙) radicals had a negligible contribution in the photodegradation of RhB. {001} BiOCl NS has shown a higher photocurrent density and lower charge transfer resistance analyzed through photoelectrochemical and electrochemical impedance measurements. This study highlights the fabrication of unique octagonal BiOCl NS with improved separation of charge carriers across high energy crystal facts to design a highly efficient photocatalyst.

5.
ChemSusChem ; 7(12): 3505-12, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25324138

ABSTRACT

The performance and photocatalytic activity of the well-known CdS/ZnO nanorod array system were improved significantly by the layer-by-layer heterojunction structure fabrication of a transparent conductive oxide (TCO) CdO layer on the CdS/ZnO nanorods. Accordingly, a CdO layer with a thickness of approximately 5-10 nm can be formed that surrounds the CdS/ZnO nanorod arrays after annealing at 500 °C under air. At an external potential of 0.0 V vs. Ag/AgCl, the CdO/CdS/ZnO nanorod array electrodes exhibit an increased incident photon to conversion efficiency, which is significantly higher than that of the CdS/ZnO nanorod array electrodes. The high charge separation between the electrons and holes at the interfaces of the heterojunction structure results from the specific band energy structure of the photoanode materials, and the unique high conductivity of the CdO layer is attributed to the suppression of electron-hole recombination; this suppression enhances the photocurrent density of the CdO/CdS/ZnO nanorod arrays. The photoresponse of the electrodes in an electrolytic solution without sacrificial agents indicated that the CdO layer also has the ability to suppress the well-known photocorrosive behavior of CdS/ZnO nanorods.


Subject(s)
Cadmium Compounds/chemistry , Electrochemical Techniques , Nanotubes , Oxides/chemistry , Photochemical Processes , Sulfides/chemistry , Zinc Oxide/chemistry , Microscopy, Electron, Scanning , X-Ray Diffraction
6.
Nanoscale ; 5(12): 5279-82, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23673481

ABSTRACT

(001)-oriented monoclinic nanorod and microplate WO3 films are fabricated on commercial FTO-coated glass substrates by a rubbing seed layer and a spin-coating seed layer assisted by hydrothermal reactions. The nanorod film obtained by the rubbing seed layer assisted by hydrothermal reactions is more regular and perpendicular to the substrate.

7.
Nanoscale ; 4(5): 1565-7, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22297394

ABSTRACT

One-dimensional ferromagnetic iron dendritic wire array film is prepared by facile electrodeposition. The space hindrance effect caused by neighbouring crystals resists the free growth directions parallel to the substrate, which is considered as a possible growth mechanism of one-dimensional morphology. Dendritic iron wire can be transformed into α-Fe(2)O(3) without destroying the dendritic morphology by thermal oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...