Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34833274

ABSTRACT

Herein, a polyurethane acrylate-based TiO2 (PU-TiO2) was fabricated using a two-step method. First, a polyurethane prepolymer was prepared. Second, PU-TiO2 was prepared using amino-modified TiO2 (A-TiO2). The best synthesis process of the polyurethane prepolymer was when the reaction temperature was 80 °C, the reaction time was 3 h and the R-value of the polyurethane acrylate was 2. Next, the influence of the A-TiO2 content on the structure and performance of PU-TiO2 was examined. The analysis of the rheological properties of the PU-TiO2 ink indicated that its viscosity gradually increased as the A-TiO2 content increased. The tensile performance of film improved because of the presence of A-TiO2. The photo-polymerisation and photo-rheological performance indicated that the PU-TiO2 structure changed from a hyperbranched structure with TiO2 as the core to a segmented structure, as the A-TiO2 content was 3%.

2.
ACS Appl Mater Interfaces ; 13(23): 27635-27644, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34060802

ABSTRACT

Membrane fouling is a major challenge for long-term oil/water separation. The incomplete degradation of organic pollutants or membrane damage exists in the common methods of membrane regeneration. Herein, a dual-responsive nanofibrous membrane with high water-in-oil emulsion separation efficiency and smart cleaning properties is reported, which shows complete restoration of its original separation performance. The pH-responsive and upper critical solution temperature (UCST)-type thermoresponsive nanofibrous membrane with a micro/nanosphere structure was developed via a one-step-blending electrospinning strategy. The membrane displays high hydrophobicity/oleophilicity at pH 7 and 25 °C and hydrophilicity/oleophobicity at pH 3 and 55 °C. As a result, it exhibits an ultrahigh permeability of 60528.76 L m-2 h-1 bar-1 and a separation efficiency of 99.5% for water-in-D5 emulsions at room temperature (25 °C). Moreover, the contaminated membranes could be easily reclaimed by being rinsed with warm acidic water (pH 3 and 55 °C). The membrane maintained high separation performance after being used for multiple cycles, indicating its scalable application for purifying emulsified oil. This study provides a facial method of constructing membranes with multiscale hierarchical structures and a new idea for the design of recyclable oil/water separation membranes.

3.
ACS Omega ; 6(51): 35600-35606, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34984291

ABSTRACT

A self-lubricating hydrogel filament was achieved by establishing an in situ photocuring system and using camphorquinone/diphenyl iodonium hexafluorophosphate (CQ/DPI) as the blue-light photoinitiators, acrylamide (AM) and N,N-dimethylacrylamide (DMAA) as the monomers, polyethylene glycol diacrylate (PEGDA) as the cross-linker, and lecithin as the lipid lubricant. The blue-light photopolymerization efficiency and the photorheological properties of the hydrogel precursor were investigated by photodifferential scanning calorimetry and a photorheological system. With the increase of DMAA, the photopolymerization efficiency of the precursor improved, while the elasticity of poly(DMAA/AM) decreased accordingly. The physical cross-linking effect between lecithin and the poly(DMAA/AM) network led to improved polymerization properties and elasticity. The lipid-based boundary layer at the hydrogel surface endowed the self-lubrication of the hydrogel filament. The extruded hydrogel filaments exhibited excellent mechanical properties and weavability, which were expected to play a realistic role in soft robots and bioengineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...