Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-21929466

ABSTRACT

In the present study, the cytotoxic effects and toxicological mechanism of six polybrominated diphenyl ethers (PBDEs) metabolites (3-OH-BDE47, 3-MeO-BDE47, 5-OH-BDE47, 5-MeO-BDE47, 6-OH-BDE85 and 6-MeO-BDE85) on L02 cells were explored by investigating the cell viability, apoptosis, lactic dehydrogenase (LDH) leakage, and oxidative stress response. The results showed that these metabolites could inhibit cell proliferation and induce apoptosis, among which 6-OH-BDE85 had the highest efficiency. LDH leakage test also showed that 6-OH-BDE85 had the strongest ability to cause LDH release. The reactive oxygen species (ROS) levels in 6-OH-BDE85- and 3-OH-BDE47-treated groups were significantly elevated in a dose-dependent manner. After treatment for 24 h, four BDE47 metabolites (3-OH-BDE47, 3-MeO-BDE47, 5-OH-BDE47, and 5-MeO-BDE47) induced an increase in superoxide dismutase (SOD) activity and decrease in glutathione (GSH) level, whereas 6-OH-BDE85 led to a decrease in both SOD activity and GSH level. These effects disappeared after continued culturing for another 24 h. In conclusion, these PBDE metabolites, especially 6-OH-BDE85, showed cytotoxicity on L02 cells, which was at least partially related to the oxidative stress level.


Subject(s)
Halogenated Diphenyl Ethers/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Glutathione/metabolism , Halogenated Diphenyl Ethers/chemistry , Humans , Polybrominated Biphenyls/chemistry , Polybrominated Biphenyls/toxicity , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...